16 References
Apley, Daniel W., and Jingyu Zhu. 2020. “Visualizing the Effects
of Predictor Variables in Black Box Supervised Learning Models.”
Journal of the Royal Statistical Society Series B: Statistical
Methodology 82 (4): 1059–86. https://doi.org/10.1111/rssb.12377.
Au, Quay, Julia Herbinger, Clemens Stachl, Bernd Bischl, and Giuseppe
Casalicchio. 2022. “Grouped Feature Importance and Combined
Features Effect Plot.” Data Mining and Knowledge
Discovery 36 (4): 1401–50. https://doi.org/10.1007/s10618-022-00840-5.
Bagnall, Anthony, Jason Lines, Aaron Bostrom, James Large, and Eamonn
Keogh. 2017. “The Great Time Series Classification Bake Off: A
Review and Experimental Evaluation of Recent Algorithmic
Advances.” Data Mining and Knowledge Discovery 31:
606–60. https://doi.org/10.1007/s10618-016-0483-9.
Baniecki, Hubert, and Przemyslaw Biecek. 2019. “modelStudio: Interactive Studio with Explanations
for ML Predictive Models.” Journal of Open Source
Software 4 (43): 1798. https://doi.org/10.21105/joss.01798.
Baniecki, Hubert, Dariusz Parzych, and Przemyslaw Biecek. 2023.
“The Grammar of Interactive Explanatory Model Analysis.”
Data Mining and Knowledge Discovery, 1573–756X. https://doi.org/10.1007/s10618-023-00924-w.
Barocas, Solon, Moritz Hardt, and Arvind Narayanan. 2019. Fairness
and Machine Learning: Limitations and Opportunities.
fairmlbook.org.
Bengtsson, Henrik. 2020. “Future 1.19.1 - Making Sure Proper
Random Numbers Are Produced in Parallel Processing.” https://www.jottr.org/2020/09/22/push-for-statistical-sound-rng/.
———. 2022. “Please Avoid detectCores() in Your R
Packages.” https://www.jottr.org/2022/12/05/avoid-detectcores/.
Bergstra, James, and Yoshua Bengio. 2012. “Random Search for
Hyper-Parameter Optimization.” Journal of Machine Learning
Research 13: 281–305. https://jmlr.org/papers/v13/bergstra12a.html.
Biecek, Przemyslaw. 2018. “DALEX: Explainers for
Complex Predictive Models in R.” Journal of
Machine Learning Research 19 (84): 1–5. https://jmlr.org/papers/v19/18-416.html.
Biecek, Przemyslaw, and Tomasz Burzykowski. 2021. Explanatory Model
Analysis. Chapman; Hall/CRC, New York. https://ema.drwhy.ai/.
Binder, Martin, Florian Pfisterer, and Bernd Bischl. 2020.
“Collecting Empirical Data about Hyperparameters for Data Driven
AutoML.” In Proceedings of the 7th ICML Workshop on Automated
Machine Learning (AutoML 2020). https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_63.pdf.
Binder, Martin, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars
Kotthoff, and Bernd Bischl. 2021. “mlr3pipelines - Flexible Machine Learning
Pipelines in R.” Journal of Machine Learning
Research 22 (184): 1–7. https://jmlr.org/papers/v22/21-0281.html.
Bischl, Bernd, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter,
Stefan Coors, Janek Thomas, et al. 2023. “Hyperparameter
Optimization: Foundations, Algorithms, Best Practices, and Open
Challenges.” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, e1484. https://doi.org/10.1002/widm.1484.
Bischl, Bernd, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers,
Frank Hutter, Michel Lang, Rafael Gomes Mantovani, Jan N. van Rijn, and
Joaquin Vanschoren. 2021. “OpenML Benchmarking
Suites.” In Thirty-Fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2). https://openreview.net/forum?id=OCrD8ycKjG.
Bischl, Bernd, Michel Lang, Olaf Mersmann, Jörg Rahnenführer, and Claus
Weihs. 2015. “BatchJobs and BatchExperiments: Abstraction
Mechanisms for Using r in Batch Environments.” Journal of
Statistical Software 64 (11): 1–25. https://doi.org/10.18637/jss.v064.i11.
Bischl, Bernd, Olaf Mersmann, Heike Trautmann, and Claus Weihs. 2012.
“Resampling Methods for Meta-Model Validation with Recommendations
for Evolutionary Computation.” Evolutionary Computation
20 (2): 249–75. https://doi.org/10.1162/EVCO_a_00069
.
Bishop, Christopher M. 2006. Pattern Recognition and Machine
Learning. Springer.
Bommert, Andrea, Xudong Sun, Bernd Bischl, Jörg Rahnenführer, and Michel
Lang. 2020. “Benchmark for Filter Methods for Feature Selection in
High-Dimensional Classification Data.” Computational
Statistics & Data Analysis 143: 106839. https://doi.org/10.1016/j.csda.2019.106839.
Breiman, Leo. 1996. “Bagging Predictors.” Machine
Learning 24 (2): 123–40. https://doi.org/10.1007/BF00058655.
———. 2001a. “Random Forests.” Machine Learning 45:
5–32. https://doi.org/10.1023/A:1010933404324.
———. 2001b. “Statistical Modeling: The Two Cultures (with Comments
and a Rejoinder by the Author).” Statistical Science 16
(3). https://doi.org/10.1214/ss/1009213726.
Bücker, Michael, Gero Szepannek, Alicja Gosiewska, and Przemyslaw
Biecek. 2022. “Transparency, Auditability, and Explainability of
Machine Learning Models in Credit Scoring.” Journal of the
Operational Research Society 73 (1): 70–90. https://doi.org/10.1080/01605682.2021.1922098.
Byrd, Richard H., Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995.
“A Limited Memory Algorithm for Bound Constrained
Optimization.” SIAM Journal on Scientific Computing 16
(5): 1190–1208. https://doi.org/10.1137/0916069.
Caton, S., and C. Haas. 2020. “Fairness in Machine Learning: A
Survey.” Arxiv 2010.04053 [cs.LG]. https://doi.org/10.48550/arXiv.2010.04053.
Chandrashekar, Girish, and Ferat Sahin. 2014. “A Survey on Feature
Selection Methods.” Computers and Electrical Engineering
40 (1): 16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024.
Chen, Tianqi, and Carlos Guestrin. 2016. “XGBoost: A
Scalable Tree Boosting System.” In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 785–94. https://doi.org/10.1145/2939672.2939785.
Collett, David. 2014. Modelling Survival Data in Medical
Research. 3rd ed. CRC. https://doi.org/10.1201/b18041.
Couronné, Raphael, Philipp Probst, and Anne-Laure Boulesteix. 2018.
“Random Forest Versus Logistic Regression: A Large-Scale Benchmark
Experiment.” BMC Bioinformatics 19: 1–14. https://doi.org/10.1186/s12859-018-2264-5.
Dandl, Susanne, Christoph Molnar, Martin Binder, and Bernd Bischl. 2020.
“Multi-Objective Counterfactual Explanations.” In
Parallel Problem Solving from Nature PPSN
XVI, 448–69. Springer International Publishing. https://doi.org/10.1007/978-3-030-58112-1_31.
Davis, Jesse, and Mark Goadrich. 2006. “The Relationship Between
Precision-Recall and ROC Curves.” In Proceedings of the 23rd
International Conference on Machine Learning, 233–40. https://doi.org/10.1145/1143844.1143874.
De Cock, Dean. 2011. “Ames, Iowa: Alternative to the Boston
Housing Data as an End of Semester Regression Project.”
Journal of Statistics Education 19 (3). https://doi.org/10.1080/10691898.2011.11889627.
Demšar, Janez. 2006. “Statistical Comparisons of Classifiers over
Multiple Data Sets.” Journal of Machine Learning
Research 7 (1): 1–30. https://jmlr.org/papers/v7/demsar06a.html.
Ding, Yufeng, and Jeffrey S Simonoff. 2010. “An Investigation of
Missing Data Methods for Classification Trees Applied to Binary Response
Data.” Journal of Machine Learning Research 11 (6):
131–70. https://www.jmlr.org/papers/v11/ding10a.html.
Dobbin, Kevin K., and Richard M. Simon. 2011. “Optimally Splitting
Cases for Training and Testing High Dimensional Classifiers.”
BMC Medical Genomics 4 (1): 31. https://doi.org/10.1186/1755-8794-4-31.
Dua, Dheeru, and Casey Graff. 2017. “UCI Machine
Learning Repository.” University of California, Irvine, School of
Information; Computer Sciences. https://archive.ics.uci.edu/ml.
Eddelbuettel, Dirk. 2020. “Parallel Computing with R:
A Brief Review.” WIREs Computational
Statistics 13 (2). https://doi.org/10.1002/wics.1515.
Feurer, Matthias, and Frank Hutter. 2019. “Hyperparameter
Optimization.” In Automated Machine Learning: Methods,
Systems, Challenges, edited by Frank Hutter, Lars Kotthoff, and
Joaquin Vanschoren, 3–33. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-05318-5_1.
Feurer, Matthias, Jost Springenberg, and Frank Hutter. 2015.
“Initializing Bayesian Hyperparameter Optimization
via Meta-Learning.” In Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 29. 1. https://doi.org/10.1609/aaai.v29i1.9354.
Fisher, Aaron, Cynthia Rudin, and Francesca Dominici. 2019. “All
Models Are Wrong, but Many Are Useful: Learning a Variable’s Importance
by Studying an Entire Class of Prediction Models Simultaneously.”
https://doi.org/10.48550/arxiv.1801.01489.
Friedman, Jerome H. 2001. “Greedy Function Approximation: A
Gradient Boosting Machine.” The Annals of Statistics 29
(5). https://doi.org/10.1214/aos/1013203451.
Garnett, Roman. 2022. Bayesian Optimization. Cambridge
University Press. https://bayesoptbook.com/.
Gijsbers, Pieter, Marcos L. P. Bueno, Stefan Coors, Erin LeDell,
Sébastien Poirier, Janek Thomas, Bernd Bischl, and Joaquin Vanschoren.
2022. “AMLB: An AutoML Benchmark.” arXiv. https://doi.org/10.48550/ARXIV.2207.12560.
Goldstein, Alex, Adam Kapelner, Justin Bleich, and Emil Pitkin. 2015.
“Peeking Inside the Black Box: Visualizing Statistical Learning
with Plots of Individual Conditional Expectation.” Journal of
Computational and Graphical Statistics 24 (1): 44–65. https://doi.org/10.1080/10618600.2014.907095.
Gower, John C. 1971. “A General Coefficient of Similarity and Some
of Its Properties.” Biometrics, 857–71. https://doi.org/10.2307/2528823.
Grinsztajn, Leo, Edouard Oyallon, and Gael Varoquaux. 2022. “Why
Do Tree-Based Models Still Outperform Deep Learning on Typical Tabular
Data?” In Thirty-Sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track. https://openreview.net/forum?id=Fp7__phQszn.
Guidotti, Riccardo. 2022. “Counterfactual Explanations and How to
Find Them: Literature Review and Benchmarking.” Data Mining
and Knowledge Discovery, 1–55. https://doi.org/10.1007/s10618-022-00831-6.
Guidotti, Riccardo, Anna Monreale, Salvatore Ruggieri, Franco Turini,
Fosca Giannotti, and Dino Pedreschi. 2018. “A Survey of Methods
for Explaining Black Box Models.” ACM Computing Surveys
(CSUR) 51 (5): 1–42. https://doi.org/10.1145/3236009.
Guyon, Isabelle, and André Elisseeff. 2003. “An Introduction to
Variable and Feature Selection.” Journal of Machine Learning
Research 3 (Mar): 1157–82. https://www.jmlr.org/papers/v3/guyon03a.html.
Hand, David J, and Robert J Till. 2001. “A Simple Generalisation
of the Area Under the ROC Curve for Multiple Class Classification
Problems.” Machine Learning 45: 171–86. https://doi.org/10.1023/A:1010920819831.
Hansen, Nikolaus, and Anne Auger. 2011. “CMA-ES: Evolution
Strategies and Covariance Matrix Adaptation.” In Proceedings
of the 13th Annual Conference Companion on Genetic and Evolutionary
Computation, 991–1010. https://doi.org/10.1145/2001858.2002123.
Hastie, Trevor, Jerome Friedman, and Robert Tibshirani. 2001. The
Elements of Statistical Learning. Springer New York. https://doi.org/10.1007/978-0-387-21606-5.
Hooker, Giles, and Lucas K. Mentch. 2019. “Please Stop Permuting
Features: An Explanation and Alternatives.” https://doi.org/10.48550/arxiv.1905.03151.
Horn, Daniel, Tobias Wagner, Dirk Biermann, Claus Weihs, and Bernd
Bischl. 2015. “Model-Based Multi-Objective Optimization: Taxonomy,
Multi-Point Proposal, Toolbox and Benchmark.” In Evolutionary
Multi-Criterion Optimization, edited by António Gaspar-Cunha,
Carlos Henggeler Antunes, and Carlos Coello Coello, 64–78. https://doi.org/10.1007/978-3-319-15934-8_5.
Huang, D., T. T. Allen, W. I. Notz, and N. Zheng. 2012. “Erratum
to: Global Optimization of Stochastic Black-Box Systems via Sequential
Kriging Meta-Models.” Journal of Global Optimization 54
(2): 431–31. https://doi.org/10.1007/s10898-011-9821-z.
Huang, Jonathan, Galal Galal, Mozziyar Etemadi, and Mahesh Vaidyanathan.
2022. “Evaluation and Mitigation of Racial Bias in Clinical
Machine Learning Models: Scoping Review.” JMIR Med
Inform 10 (5). https://doi.org/10.2196/36388.
Hutter, Frank, Lars Kotthoff, and Joaquin Vanschoren, eds. 2019.
Automated Machine Learning - Methods, Systems, Challenges.
Springer.
“Introduction to Data.table.” 2023. https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
2014. An Introduction to Statistical Learning: With Applications in
R. Springer Publishing Company, Incorporated. https://doi.org/10.1007/978-1-4614-7138-7.
Jamieson, Kevin, and Ameet Talwalkar. 2016. “Non-Stochastic Best
Arm Identification and Hyperparameter Optimization.” In
Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, edited by Arthur Gretton and Christian
C. Robert, 51:240–48. Proceedings of Machine Learning Research. Cadiz,
Spain: PMLR. https://proceedings.mlr.press/v51/jamieson16.html.
Japkowicz, Nathalie, and Mohak Shah. 2011. Evaluating Learning
Algorithms: A Classification Perspective. Cambridge University
Press. https://doi.org/10.1017/CBO9780511921803.
Jones, Donald R., Cary D. Perttunen, and Bruce E. Stuckman. 1993.
“Lipschitzian Optimization Without the Lipschitz
Constant.” Journal of Optimization Theory and
Applications 79 (1): 157–81. https://doi.org/10.1007/BF00941892.
Jones, Donald R., Matthias Schonlau, and William J. Welch. 1998.
“Efficient Global Optimization of Expensive Black-Box
Functions.” Journal of Global Optimization 13 (4):
455–92. https://doi.org/10.1023/A:1008306431147.
Kalbfleisch, John D, and Ross L Prentice. 2011. The Statistical
Analysis of Failure Time Data. Vol. 360. John Wiley & Sons. https://doi.org/10.1002/9781118032985.
Karl, Florian, Tobias Pielok, Julia Moosbauer, Florian Pfisterer, Stefan
Coors, Martin Binder, Lennart Schneider, et al. 2022.
“Multi-Objective Hyperparameter Optimization–an Overview.”
arXiv Preprint arXiv:2206.07438. https://doi.org/10.48550/arXiv.2206.07438.
Kim, Ji-Hyun. 2009. “Estimating Classification Error Rate:
Repeated Cross-Validation, Repeated Hold-Out and Bootstrap.”
Computational Statistics & Data Analysis 53 (11): 3735–45.
https://doi.org/10.1016/j.csda.2009.04.009.
Kim, Jungtaek, and Seungjin Choi. 2021. “On Local Optimizers of
Acquisition Functions in Bayesian Optimization.” In Machine
Learning and Knowledge Discovery in Databases, edited by Frank
Hutter, Kristian Kersting, Jefrey Lijffijt, and Isabel Valera, 675–90.
https://doi.org/10.1007/978-3-030-67661-2_40.
Knowles, Joshua. 2006. “ParEGO: A Hybrid Algorithm with on-Line
Landscape Approximation for Expensive Multiobjective Optimization
Problems.” IEEE Transactions on Evolutionary Computation
10 (1): 50–66. https://doi.org/10.1109/TEVC.2005.851274.
Kohavi, Ron. 1995. “A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model Selection.” In Proceedings of
the 14th International Joint Conference on Artificial
Intelligence - Volume 2, 1137–43.
IJCAI’95. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Kohavi, Ron, and George H. John. 1997. “Wrappers for Feature
Subset Selection.” Artificial Intelligence 97 (1):
273–324. https://doi.org/10.1016/S0004-3702(97)00043-X.
Krzyziński, Mateusz, Mikołaj Spytek, Hubert Baniecki, and Przemysław
Biecek. 2023. “SurvSHAP(t):
Time-Dependent Explanations of Machine Learning Survival Models.”
Knowledge-Based Systems 262: 110234. https://doi.org/10.1016/j.knosys.2022.110234.
Kuehn, Daniel, Philipp Probst, Janek Thomas, and Bernd Bischl. 2018.
“Automatic Exploration of Machine Learning Experiments on
OpenML.” https://arxiv.org/abs/1806.10961.
Lang, Michel. 2017. “checkmate: Fast
Argument Checks for Defensive R Programming.”
The R Journal 9 (1): 437–45. https://doi.org/10.32614/RJ-2017-028.
Lang, Michel, Martin Binder, Jakob Richter, Patrick Schratz, Florian
Pfisterer, Stefan Coors, Quay Au, Giuseppe Casalicchio, Lars Kotthoff,
and Bernd Bischl. 2019. “mlr3: A
Modern Object-Oriented Machine Learning Framework in
R.” Journal of Open Source Software,
December. https://doi.org/10.21105/joss.01903.
Lang, Michel, Bernd Bischl, and Dirk Surmann. 2017. “batchtools: Tools for R to Work on
Batch Systems.” The Journal of Open Source Software 2
(10). https://doi.org/10.21105/joss.00135.
LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
“Gradient-Based Learning Applied to Document Recognition.”
Proceedings of the IEEE 86 (11): 2278–2324. https://doi.org/10.1109/5.726791.
Li, Lisha, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. 2018. “Hyperband: A Novel Bandit-Based Approach
to Hyperparameter Optimization.” Journal of Machine Learning
Research 18 (185): 1–52. https://jmlr.org/papers/v18/16-558.html.
Lindauer, Marius, Katharina Eggensperger, Matthias Feurer, André
Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and
Frank Hutter. 2022. “SMAC3: A Versatile Bayesian
Optimization Package for Hyperparameter Optimization.”
Journal of Machine Learning Research 23 (54): 1–9. https://www.jmlr.org/papers/v23/21-0888.html.
Lipton, Zachary C. 2018. “The Mythos of Model Interpretability: In
Machine Learning, the Concept of Interpretability Is Both Important and
Slippery.” Queue 16 (3): 31–57. https://doi.org/10.1145/3236386.3241340.
López-Ibáñez, Manuel, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,
Mauro Birattari, and Thomas Stützle. 2016. “The irace Package: Iterated Racing for Automatic
Algorithm Configuration.” Operations Research
Perspectives 3: 43–58. https://doi.org/10.1016/j.orp.2016.09.002.
Lundberg, Scott M., Gabriel G. Erion, and Su-In Lee. 2019.
“Consistent Individualized Feature Attribution for Tree
Ensembles.” arXiv. https://doi.org/10.48550/arxiv.1802.03888.
Mehrabi, Ninareh, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and
Aram Galstyan. 2021. “A Survey on Bias and Fairness in Machine
Learning.” ACM Comput. Surv. 54 (6). https://doi.org/10.1145/3457607.
Micci-Barreca, Daniele. 2001. “A Preprocessing Scheme for
High-Cardinality Categorical Attributes in Classification and Prediction
Problems.” ACM SIGKDD Explorations
Newsletter 3 (1): 27–32. https://doi.org/10.1145/507533.507538.
Mitchell, Shira, Eric Potash, Solon Barocas, Alexander D’Amour, and
Kristian Lum. 2021. “Algorithmic Fairness: Choices, Assumptions,
and Definitions.” Annual Review of Statistics and Its
Application 8: 141–63. https://doi.org/10.1146/annurev-statistics-042720-125902.
Molinaro, Annette M, Richard Simon, and Ruth M Pfeiffer. 2005.
“Prediction Error Estimation: A Comparison of Resampling
Methods.” Bioinformatics 21 (15): 3301–7. https://doi.org/10.1093/bioinformatics/bti499.
Molnar, Christoph. 2022. Interpretable Machine Learning: A Guide for
Making Black Box Models Explainable. 2nd ed. https://christophm.github.io/interpretable-ml-book.
Molnar, Christoph, Bernd Bischl, and Giuseppe Casalicchio. 2018.
“iml: An R Package for
Interpretable Machine Learning.” JOSS 3 (26): 786. https://doi.org/10.21105/joss.00786.
Molnar, Christoph, Gunnar König, Julia Herbinger, Timo Freiesleben,
Susanne Dandl, Christian A. Scholbeck, Giuseppe Casalicchio, Moritz
Grosse-Wentrup, and Bernd Bischl. 2022. “General Pitfalls
of Model-Agnostic Interpretation Methods for Machine Learning
Models.” In xxAI - Beyond Explainable AI: International
Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna,
Austria, Revised and Extended Papers, edited by Andreas Holzinger,
Randy Goebel, Ruth Fong, Taesup Moon, Klaus-Robert Müller, and Wojciech
Samek, 39–68. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-04083-2_4.
Morales-Hernández, Alejandro, Inneke Van Nieuwenhuyse, and Sebastian
Rojas Gonzalez. 2022. “A Survey on Multi-Objective Hyperparameter
Optimization Algorithms for Machine Learning.” Artificial
Intelligence Review, 1–51. https://doi.org/10.1007/s10462-022-10359-2.
Niederreiter, Harald. 1988. “Low-Discrepancy and Low-Dispersion
Sequences.” Journal of Number Theory 30 (1): 51–70. https://doi.org/10.1016/0022-314X(88)90025-X.
Pargent, Florian, Florian Pfisterer, Janek Thomas, and Bernd Bischl.
2022. “Regularized Target Encoding Outperforms Traditional Methods
in Supervised Machine Learning with High Cardinality Features.”
Computational Statistics 37 (5): 2671–92. https://doi.org/10.1007/s00180-022-01207-6.
Poulos, Jason, and Rafael Valle. 2018. “Missing Data Imputation
for Supervised Learning.” Applied Artificial
Intelligence 32 (2): 186–96. https://doi.org/10.1080/08839514.2018.1448143.
Provost, Foster, and Tom Fawcett. 2013. Data Science for Business:
What You Need to Know about Data Mining and Data-Analytic Thinking.
O’Reilly Media.
R Core Team. 2019. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for
Statistical Computing. https://www.R-project.org/.
Ribeiro, Marco, Sameer Singh, and Carlos Guestrin. 2016.
““Why Should I Trust You?”:
Explaining the Predictions of Any Classifier.” In Proceedings
of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Demonstrations, 97–101.
San Diego, California: Association for Computational Linguistics. https://doi.org/10.18653/v1/N16-3020.
Romaszko, Kamil, Magda Tatarynowicz, Mateusz Urbański, and Przemysław
Biecek. 2019. “modelDown: Automated Website Generator with
Interpretable Documentation for Predictive Machine Learning
Models.” Journal of Open Source Software 4 (38): 1444.
https://doi.org/10.21105/joss.01444.
Ruspini, Enrique H. 1970. “Numerical Methods for Fuzzy
Clustering.” Information Sciences 2 (3): 319–50. https://doi.org/10.1016/S0020-0255(70)80056-1.
Saleiro, Pedro, Benedict Kuester, Abby Stevens, Ari Anisfeld, Loren
Hinkson, Jesse London, and Rayid Ghani. 2018. “Aequitas: A Bias
and Fairness Audit Toolkit.” arXiv Preprint
arXiv:1811.05577. https://doi.org/10.48550/arXiv.1811.05577.
Schmidberger, Markus, Martin Morgan, Dirk Eddelbuettel, Hao Yu, Luke
Tierney, and Ulrich Mansmann. 2009. “State of the Art in Parallel
Computing with R.” Journal of Statistical
Software 31 (1). https://doi.org/10.18637/jss.v031.i01.
Schratz, Patrick, Marc Becker, Michel Lang, and Alexander Brenning.
2021. “mlr3spatiotempcv:
Spatiotemporal Resampling Methods for Machine Learning in
R,” October. https://arxiv.org/abs/2110.12674.
Silverman, Bernard W. 1986. Density Estimation for Statistics and
Data Analysis. Vol. 26. CRC press.
Simon, Richard. 2007. “Resampling Strategies for Model Assessment
and Selection.” In Fundamentals of Data Mining in Genomics
and Proteomics, edited by Werner Dubitzky, Martin Granzow, and
Daniel Berrar, 173–86. Boston, MA: Springer
US. https://doi.org/10.1007/978-0-387-47509-7_8.
Snoek, Jasper, Hugo Larochelle, and Ryan P Adams. 2012. “Practical
Bayesian Optimization of Machine Learning Algorithms.” In
Advances in Neural Information Processing Systems, edited by F.
Pereira, C. J. Burges, L. Bottou, and K. Q. Weinberger. Vol. 25. https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf.
Sonabend, Raphael Edward Benjamin. 2021. “A Theoretical and
Methodological Framework for Machine Learning in Survival Analysis:
Enabling Transparent and Accessible Predictive Modelling on
Right-Censored Time-to-Event Data.” PhD, University College
London (UCL). https://discovery.ucl.ac.uk/id/eprint/10129352/.
Sonabend, Raphael, and Andreas Bender. 2023. Machine Learning in
Survival Analysis. https://www.mlsabook.com.
Sonabend, Raphael, Andreas Bender, and Sebastian Vollmer. 2022.
“Avoiding C-Hacking When Evaluating Survival
Distribution Predictions with Discrimination Measures.” Edited by
Zhiyong Lu. Bioinformatics 38 (17): 4178–84. https://doi.org/10.1093/bioinformatics/btac451.
Sonabend, Raphael, Franz J Király, Andreas Bender, Bernd Bischl, and
Michel Lang. 2021. “mlr3proba: An
R Package for Machine Learning in Survival
Analysis.” Bioinformatics, February. https://doi.org/10.1093/bioinformatics/btab039.
Sonabend, Raphael, Florian Pfisterer, Alan Mishler, Moritz Schauer,
Lukas Burk, Sumantrak Mukherjee, and Sebastian Vollmer. 2022.
“Flexible Group Fairness Metrics for Survival Analysis.” In
DSHealth 2022 Workshop on Applied Data Science for Healthcare at
KDD2022. https://arxiv.org/abs/2206.03256.
Stein, Michael. 1987. “Large Sample Properties of Simulations
Using Latin Hypercube Sampling.” Technometrics 29 (2):
143–51. https://doi.org/10.2307/1269769.
Strobl, Carolin, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin,
and Achim Zeileis. 2008. “Conditional Variable Importance for
Random Forests.” BMC Bioinformatics 9 (1).
https://doi.org/10.1186/1471-2105-9-307.
Štrumbelj, Erik, and Igor Kononenko. 2013. “Explaining Prediction
Models and Individual Predictions with Feature Contributions.”
Knowledge and Information Systems 41 (3): 647–65. https://doi.org/10.1007/s10115-013-0679-x.
Thornton, Chris, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
2013. “Auto-WEKA.” In Proceedings of the
19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM. https://doi.org/10.1145/2487575.2487629.
Tsallis, Constantino, and Daniel A Stariolo. 1996. “Generalized
Simulated Annealing.” Physica A: Statistical Mechanics and
Its Applications 233 (1-2): 395–406. https://doi.org/10.1016/S0378-4371(96)00271-3.
Vanschoren, Joaquin, Jan N. van Rijn, Bernd Bischl, and Luis Torgo.
2013. “OpenML: Networked Science in Machine Learning.”
SIGKDD Explorations 15 (2): 49–60. https://doi.org/10.1145/2641190.2641198.
Wachter, Sandra, Brent Mittelstadt, and Chris Russell. 2017.
“Counterfactual Explanations Without Opening the Black Box:
Automated Decisions and the GDPR.”
SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3063289.
———. 2021. “Why Fairness Cannot Be Automated: Bridging the Gap
Between EU Non-Discrimination Law and AI.” Computer Law &
Security Review 41: 105567. https://doi.org/https://doi.org/10.1016/j.clsr.2021.105567.
Watson, David S, and Marvin N Wright. 2021. “Testing Conditional
Independence in Supervised Learning Algorithms.” Machine
Learning 110 (8): 2107–29. https://doi.org/10.1007/s10994-021-06030-6.
Wexler, James, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg,
Fernanda Viégas, and Jimbo Wilson. 2019. “The What-If Tool:
Interactive Probing of Machine Learning Models.” IEEE
Transactions on Visualization and Computer Graphics 26 (1): 56–65.
https://doi.org/10.1109/TVCG.2019.2934619.
Wickham, Hadley, and Garrett Grolemund. 2017. R for
Data Science: Import, Tidy, Transform, Visualize, and Model Data.
1st ed. O’Reilly Media. https://r4ds.had.co.nz/.
Williams, Christopher KI, and Carl Edward Rasmussen. 2006. Gaussian
Processes for Machine Learning. Vol. 2. 3. MIT press Cambridge, MA.
Wiśniewski, Jakub, and Przemysław Biecek. 2022. “The
R Journal: Fairmodels: A Flexible Tool for Bias Detection,
Visualization, and Mitigation in Binary Classification Models.”
The R Journal 14: 227–43. https://doi.org/10.32614/RJ-2022-019.
Wolpert, David H. 1992. “Stacked Generalization.”
Neural Networks 5 (2): 241–59. https://doi.org/10.1016/S0893-6080(05)80023-1.
Xiang, Yang, Sylvain Gubian, Brian Suomela, and Julia Hoeng. 2013.
“Generalized Simulated Annealing for Global Optimization: The
GenSA Package.” R Journal 5 (1): 13. https://doi.org/10.32614/RJ-2013-002.