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Preface

The mlr package (Bischl et al. 2016) was first released on CRAN in 2013, with the core
design and architecture dating back further. Over time, the addition of many features led
to a complex design that made it too difficult for us to extend further. In hindsight, we
saw that some design and architecture choices in mlr made it difficult to support new
features, in particular with respect to ML pipelines. So in 2018, we set about working on a
reimplementation, which resulted in the first release of m1r3 on CRAN in July 2019.

Overview

The m1r3 ecosystem is the result of many years of methodological and applied research. This
book describes the resulting features and discusses best practices for ML, technical imple-
mentation details, and in-depth considerations for model optimization. This book may be
helpful for both practitioners who want to quickly apply machine learning (ML) algorithms
and researchers who want to implement, benchmark, and compare their new methods in a
structured environment. While we hope this book is accessible to a wide range of readers
and levels of ML expertise, we do assume that readers have taken at least an introductory
ML course or have the equivalent expertise and some basic experience with R. A background
in computer science or statistics is beneficial for understanding the advanced functionality
described in the later chapters of this book, but not required. A comprehensive ML in-
troduction for those new to the field can be found in James et al. (2014). Wickham and
Grolemund (2017) provides a comprehensive introduction to data science in R.

The book is split into the following four parts:

Part I: Fundamentals In this part of the book we will teach you the fundamentals of m1r3.
This will give you a flavor of the building blocks of the m1r3 universe and the basic tools you
will need to tackle most machine learning problems. We recommend that all readers study
these chapters to become familiar with m1r3 terminology, syntax, and style. In Chapter 2 we
will cover the basic classes in m1r3, including Learner (machine learning implementations),
Measure (performance metrics), and Task (machine learning task definitions). Chapter 3 will
take evaluation a step further to include discussions about resampling — robust strategies for
measuring model performance — and benchmarking — experiments for comparing multiple
models.

Part II: Tuning and Feature Selection In this part of the book, we will look at more
advanced methodology that is essential to developing powerful ML models with good pre-
dictive ability. Chapter 4 introduces hyperparameter optimization, which is the process of
tuning model hyperparameters to obtain better model performance. Tuning is implemented
via the mlr3tuning package, which also includes methods for automating complex tuning
processes, including nested resampling. The performance of ML models can be improved
by tuning hyperparameters but also by carefully selecting features. Chapter 6 introduces
feature selection with filters and wrappers implemented in mlr3filters and mlr3fselect.
For readers interested in taking a deep dive into tuning, Chapter 5 discusses advanced tun-

xiii
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ing methods including error handling, multi-objective tuning, and tuning with Hyperband
and Bayesian optimization methods.

Part III: Pipelines and Preprocessing In Part III we introduce mlr3pipelines, which
allows users to implement complex ML workflows easily. In Chapter 7 we will show you
how to build a pipeline out of discrete configurable operations and how to treat complex
pipelines as if they were any other machine learning model. In Chapter 8 we will build
on the previous chapter by introducing non-sequential pipelines, which can have multiple
branches that carry out operations concurrently. We will also demonstrate how to tune
pipelines, including how to tune which operations should be included in the pipeline. Finally,
in Chapter 9 we will put pipelines into practice by demonstrating how to solve common
problems that occur when fitting ML models to messy data.

Part TV: Advanced Topics In the final part of the book, we will look at advanced
methodology and technical details. This part of the book is more theory-heavy in some
sections to help ground the design and implementation decisions. We will begin by looking
at advanced technical details in Chapter 10 that are essential reading for advanced users
who require parallelization, custom error handling, or large databases. Chapter 11 will
build on all preceding chapters to introduce large-scale benchmarking experiments that
compare many models, tasks, and measures; including how to make use of mlr3 extension
packages for loading data, using high-performance computing clusters, and formal statistical
analysis of benchmark experiments. Chapter 12 will discuss different packages that are
compatible with m1r3 to provide model-agnostic interpretability for feature importance
and local explainability of individual predictions. Chapter 13 will then delve into detail on
domain-specific methods that are implemented in our extension packages including survival
analysis, density estimation, spatio-temporal analysis, and more. Readers may choose to
selectively read sections in this chapter depending on your use case (i.e., if you have domain-
specific problems to tackle), or to use these as introductions to new domains to explore.
Finally, Chapter 14 will introduce algorithmic fairness, which includes specialized measures
and methods to identify and reduce algorithmic biases.

Citing this book

This book is the culmination of many years worth of software design, coding, writing, and
editing. It is very important to us that all our contributors are credited appropriately.

Citation details of packages in the m1r3 ecosystem can be found in their respective GitHub
repositories.

When you are citing this book please cite chapters directly; citations can be found at the
end of each chapter. If you need to reference the full book please use:

Bischl, B., Sonabend, R., Kotthoff, L., & Lang, M. (Eds.). (2024).
"Applied Machine Learning Using mlr3 in R". CRC Press. https://mlr3book.mlr-org.com

@book{Bisch12024
title = {Applied Machine Learning Using {m}1r3 in {R}},
editor = {Bernd Bischl and Raphael Sonabend and Lars Kotthoff and Michel Lang},
url = {https://mlr3book.mlr-org.com},
year = {2024},
isbn = {9781032507545%},
publisher = {CRC Press}


https://mlr3pipelines.mlr-org.com

Preface XV

Please see the front page of the book website (https://mlr3book.mlr-org.com) for full
licensing details.

We hope you enjoy reading this book.

Bernd, Raphael, Lars, Michel
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1

Introduction and Overview

Lars Kotthoff
University of Wyoming

Raphael Sonabend
Imperial College London

Natalie Foss
University of Wyoming

Bernd Bischl
Ludwig-Mazimilians- Universitdat Minchen, and Munich Center for Machine Learning
(MCML)

Welcome to the Machine Learning in R universe. In this book, we will guide you through the
functionality offered by m1r3 step by step. If you want to contribute to our universe, ask any
questions, read documentation, or just chat with the team, head to https://github.com/mlr-
org/mlr3 which has several useful links in the README.

The m1r3 (Lang et al. 2019) package and the wider m1r3 ecosystem provide a generic, object-
oriented, and extensible framework for regression (Section 2.1), classification (Section 2.5),
and other machine learning tasks (Chapter 13) for the R language (R Core Team 2019). On
the most basic level, the unified interface provides functionality to train, test, and evaluate
many machine learning algorithms. You can also take this a step further with hyperparame-
ter optimization, computational pipelines, model interpretation, and much more. mlr3 has
similar overall aims to caret and tidymodels for R, scikit-learn for Python, and MLJ
for Julia. In general, m1r3 is designed to provide more flexibility than other ML frameworks
while still offering easy ways to use advanced functionality. While tidymodels in particular
makes it very easy to perform simple ML tasks, m1r3 is more geared towards advanced ML.

Before we can show you the full power of m1r3, we recommend installing the mlr3verse
package, which will install several, important packages in the mlr3 ecosystem.

install.packages("mlr3verse")

Chapters that were added after the release of the printed version of this book are marked
with a ‘+.
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2 Introduction and Overview

1.1 Installation Guidelines

There are many packages in the mlr3 ecosystem that you may want to use as you
work through this book. All our packages can be installed from GitHub and R-universe';
the majority (but not all) packages can also be installed from CRAN. We recommend
adding the mlr-org R-universe to your R options so you can install all packages with
install.packages (), without having to worry which package repository it comes from.
To do this, install usethis and run the following:

usethis::edit_r_profile()

In the file that opens add or change the repos argument in options so it looks something
like the code below (you might need to add the full code block below or just edit the existing
options function).

options(repos = c(
mlrorg = "https://mlr-org.r-universe.dev",
CRAN = "https://cloud.r-project.org/"

))

Save the file, restart your R session, and you are ready to go!

If you want the latest development version of any of our packages, run
remotes::install_github("mlr-org/{pkg}")
with {pkg} replaced with the name of the package you want to install. You can see an up-to-

date list of all our extension packages at https://github.com/mlr-org/mlr3/wiki/Extension-
Packages.

1.2 How to Use This Book

You could read this book cover to cover but you may benefit more from dipping in and
out of chapters as suits your needs, we have provided a comprehensive index to help you
find relevant pages and sections. We do recommend reading the first part of the book in its
entirety as this will provide you with a complete overview of our basic infrastructure and
design, which is used throughout our ecosystem.

We have marked sections that are particularly complex with respect to either technical or
methodological detail and could be skipped on a first read with the following information
box:

IR-universe is an alternative package repository to CRAN. The bit of code below tells R to look at both
R-universe and CRAN when trying to install packages. R will always install the latest version of a package.


https://cran.r-project.org/package=usethis
https://github.com/mlr-org/mlr3/wiki/Extension-Packages
https://github.com/mlr-org/mlr3/wiki/Extension-Packages

mlrdbook Code Style 3

1 This section covers advanced ML or technical details.

Each chapter includes examples, API references, and explanations of methodologies. At the
end of each part of the book we have included exercises for you to test yourself on what
you have learned; you can find the solutions to these exercises at https://mlr3book.mlr-
org.com/solutions.html. We have marked more challenging (and possibly time-consuming)
exercises with an asterisk, "*.

If you want more detail about any of the tasks used in this book or links to all the m1r3
dictionaries, please see the appendices in the online version of the book at https://mlr3bo
ok.mlr-org.com/.

Reproducibility

At the start of each chapter we run set.seed(123) and use renv to manage package
versions, you can find our lockfile at https://github.com/mlr-org/mlr3book/blob/main/b
ook /renv.lock.

1.3 mlr3book Code Style
Throughout this book we will use the following code style:

We always use = instead of <- for assignment.
Class names are in UpperCamelCase

Function and method names are in lower_snake_case

L s

When referencing functions, we will only include the package prefix (e.g.,
pkg: :function) for functions outside the mlr3 universe or when there may
be ambiguity about in which package the function lives. Note you can use
environment (function) to see which namespace a function is loaded from.

5. We denote packages, fields, methods, and functions as follows:

e package (highlighted in the first instance)

epackage: :function() or function() (see point 4)

o $field for fields (data encapsulated in an R6 class)

e $method () for methods (functions encapsulated in an R6 class)

eClass (for R6 classes primarily, these can be distinguished from packages
by context)

Now let us see this in practice with our first example.


https://mlr3book.mlr-org.com/solutions.html
https://mlr3book.mlr-org.com/solutions.html
https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/
https://cran.r-project.org/package=renv
https://github.com/mlr-org/mlr3book/blob/main/book/renv.lock
https://github.com/mlr-org/mlr3book/blob/main/book/renv.lock

4 Introduction and Quverview

1.4 mlr3 by Example

The mlr3 universe includes a wide range of tools taking you from basic ML to complex
experiments. To get started, here is an example of the simplest functionality — training a
model and making predictions.

library(mlr3)

task = tsk("penguins")

split = partition(task)
learner = lrn("classif.rpart")

learner$train(task, row_ids = split$train)
learner$model

n= 230

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 230 131 Adelie (0.430435 0.200000 0.369565)
2) flipper_length< 207 142 43 Adelie (0.697183 0.295775 0.007042)
4) bill_length< 42.2 94 1 Adelie (0.989362 0.010638 0.000000) *
5) bill_length>=42.2 48 7 Chinstrap (0.125000 0.854167 0.020833)
10) island=Biscoe,Torgersen 7 1 Adelie (0.857143 0.000000 0.142857) *
11) island=Dream 41 0 Chinstrap (0.000000 1.000000 0.000000) *
3) flipper_length>=207 88 4 Gentoo (0.000000 0.045455 0.954545) *

prediction = learner$predict(task, row_ids = split$test)
prediction

<PredictionClassif> for 114 observations:
row_ids truth response
2 Adelie Adelie
3 Adelie Adelie
12 Adelie Adelie
340 Chinstrap Gentoo
341 Chinstrap Chinstrap
344 Chinstrap Chinstrap

prediction$score(msr("classif.acc"))

classif.acc
0.9386

In this example, we trained a decision tree on a subset of the penguins dataset, made
predictions on the rest of the data and then evaluated these with the accuracy measure. In
Chapter 2 we will break this down in more detail.


https://www.rdocumentation.org/packages/palmerpenguins/topics/penguins
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The mlr3 interface also lets you run more complicated experiments in just a few lines of
code:

library (mlr3verse)
tasks = tsks(c("breast_cancer", "sonar"))

glrn_rf_tuned = as_learner(ppl("robustify") %>>J, auto_tuner(
tnr("grid_search", resolution = 5),
lrn("classif.ranger", num.trees = to_tune (200, 500)),
rsmp ("holdout")

))

glrn_rf_tuned$id = "RF"

glrn_stack = as_learner(ppl("robustify") %>>% ppl("stacking",
lrns(c("classif.rpart", "classif.kknn")),
lrn("classif.log_reg")

))
glrn_stack$id = "Stack"

learners = c(glrn_rf_tuned, glrn_stack)
bmr = benchmark(benchmark_grid(tasks, learners, rsmp("cv", folds = 3)))

bmr$aggregate (msr("classif.acc"))

task_id learner_id classif.acc

1: breast_cancer RF 0.9649
2: breast_cancer Stack 0.9342
3: sonar RF 0.7536
4: sonar Stack 0.7246

In this (much more complex!) example we chose two tasks and two learners and used auto-
mated tuning to optimize the number of trees in the random forest learner (Chapter 4), and
a machine learning pipeline that imputes missing data, collapses factor levels, and stacks
models (Chapter 7 and Chapter 8). We also showed basic features like loading learners
(Chapter 2) and choosing resampling strategies for benchmarking (Chapter 3). Finally, we
compared the performance of the models using the mean accuracy with three-fold cross-
validation.

You will learn how to do all this and more in this book.

1.5 The mlr3 Ecosystem

Throughout this book, we often refer to mlr3, which may refer to the single mlr3 base
package but usually refers to all packages in our ecosystem, this should be clear from context.
The m1r3 package provides the base functionality that the rest of the ecosystem depends on
for building more advanced machine learning tools. Figure 1.1 shows the packages in our
ecosystem that extend mlr3 with capabilities for preprocessing, pipelining, visualizations,
additional learners, additional task types, and much more.


https://mlr3.mlr-org.com
https://mlr3.mlr-org.com
https://mlr3.mlr-org.com
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mlr3pipelines Pipelines

mlr3learners
mlr3db f
Learners mlr3extralearners
mlr3oml Data

mlr3torch
mlr3data

mlr3spatiotempcv

mlr3measures
Evaluation —<
mlr3benchmark
mlr3spatial
mlr3proba mlr3tuning
Special Tasks =——__
P mlr3

mlr3cluster miesmuschel

mlr3fda mlr3hyperband

Tuning

mlr3fairness mlr3mbo

bbotk
mlr3misc

mlr3tuningspaces
mlr3viz
mlr3verse Utilities mlr3filters
Feature Selection

mlr3batchmark mlr3fselect

paradox

Figure 1.1: Overview of the m1r3 ecosystem, the packages with gray dashed lines are still
in development, all others have a stable interface.
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A complete and up-to-date list of extension packages can be found at https://mlr-org.com/
ecosystem.html.

As well as packages within the m1r3 ecosystem, software in the mlr3verse also depends on
the following popular and well-established packages:

e R6: The class system predominantly used in m1r3.

o data.table: High-performance extension of R’s data.frame.

o digest: Cryptographic hash functions.

e uuid: Generation of universally unique identifiers.

e 1gr: Configurable logging library.

o mlbench and palmerpenguins: Machine learning datasets.

o future / future.apply / parallelly: For parallelization (Section 10.1).
e evaluate: For capturing output, warnings, and exceptions (Section 10.2).

We build on R6 for object orientation and data.table to store and operate on tabular
data. As both are core to mlr3 we briefly introduce both packages for beginners; in-depth
expertise with these packages is not necessary to work with m1r3.

1.5.1 R6 for Beginners

R6 is one of R’s more recent paradigms for object-oriented programming. If you have expe-
rience with any (class) object-oriented programming then R6 should feel familiar. We focus
on the parts of R6 that you need to know to use m1lr3.

Objects are created by constructing an instance of an R6Class variable using the $new()
initialization method. For example, say we have implemented a class called Foo, then foo
= Foo$new(bar = 1) would create a new object of class Foo and set the bar argument
of the constructor to the value 1. In practice, we implement a lot of sugar functionality
(Section 1.6) in mlr3 that make construction and access a bit more convenient.

Some R6 objects may have mutable states that are encapsulated in their fields, which can be
accessed through the dollar, $, operator. Continuing the previous example, we can access the
bar value in the foo object by using foo$bar or we could give it a new value, e.g. foo$bar
= 2. These fields can also be ‘active bindings’, which perform additional computations when
referenced or modified.

In addition to fields, methods allow users to inspect the object’s state, retrieve information,
or perform an action that changes the internal state of the object. For example, in mlr3,
the $train() method of a learner changes the internal state of the learner by building and
storing a model. Methods that modify the internal state of an object often return the object
itself. Other methods may return a new R6 object. In both cases, it is possible to ‘chain’
methods by calling one immediately after the other using the $-operator; this is similar
to the %>%-operator used in tidyverse packages. For example, Foo$bar () $hello_world()
would run the $bar () method of the object Foo and then the $hello_world() method of
the object returned by $bar () (which may be Foo itself).

Fields and methods can be public or private. The public fields and methods define the API
to interact with the object. In m1lr3, you can safely ignore private methods unless you are
looking to extend our universe by adding a new class (Chapter 10).

Finally, R6 objects are environments, and as such have reference semantics. This means
that, for example, foo2 = foo does not create a new variable called foo2 that is a copy of
foo. Instead, it creates a variable called foo2 that references foo, and so setting foo$bar


https://mlr-org.com/ecosystem.html
https://mlr-org.com/ecosystem.html
https://cran.r-project.org/package=R6
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=digest
https://cran.r-project.org/package=uuid
https://cran.r-project.org/package=lgr
https://cran.r-project.org/package=mlbench
https://cran.r-project.org/package=palmerpenguins
https://cran.r-project.org/package=future
https://cran.r-project.org/package=future.apply
https://cran.r-project.org/package=parallelly
https://cran.r-project.org/package=evaluate
https://cran.r-project.org/package=R6
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=R6
https://www.rdocumentation.org/packages/R6/topics/R6Class

$clone ()
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3 will also change foo2$bar to 3 and vice versa. To copy an object, use the $clone (deep
= TRUE) method, so to copy foo: foo2 = foo$clone(deep = TRUE).

For a longer introduction, we recommend the R6 vignettes found at https://r6.r-lib.org/;
more detail can be found in https://adv-r.hadley.nz/r6.html.

1.5.2 data.table for Beginners

The package data.table implements data.table(), which is a popular alternative to R’s
data.frame(). We use data.table because it is blazingly fast and scales well to bigger
data.

As with data.frame, data.tables can be constructed with data.table() or
as.data.table():

library(data.table)
# converting a matrix with as.data.table
as.data.table(matrix(runif(4), 2, 2))

Vi V2
1: 0.2989 0.5856
2: 0.1594 0.1488

# using data.table
dt = data.table(x = 1:6, y = rep(letters[1:3], each = 2))
dt

o O WN -
o O W N X
0O 0 T op e

data.tables can be used much like data.frames, but they provide additional functionality
that makes complex operations easier. For example, data can be summarized by groups with
a by argument in the [ operator and they can be modified in-place with the := operator.

# mean of x column in groups given by y
dt[, mean(x), by = "y"]

y Vi
1: a 1.5
2: b 3.5
3: ¢ b.5

# adding a new column with :=
dt[, z := x * 3]
dt

Xy z


https://r6.r-lib.org/
https://adv-r.hadley.nz/r6.html
https://cran.r-project.org/package=data.table
https://www.rdocumentation.org/packages/data.table/topics/data.table-package
https://cran.r-project.org/package=data.table
https://www.rdocumentation.org/packages/data.table/topics/data.table-package
https://www.rdocumentation.org/packages/data.table/topics/as.data.table
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Finally data.table also uses reference semantics so you will need to use copy() to clone
a data.table. For an in-depth introduction, we recommend the vignette “Introduction to
Data.table” (2023).

1.6 Essential mlr3 Utilities

mlr3 includes a few important utilities that are essential to simplifying code in our ecosys-
tem.

Sugar Functions

Most objects in m1r3 can be created through convenience functions called helper functions
or sugar functions. They provide shortcuts for common code idioms, reducing the amount
of code a user has to write. For example 1lrn("regr.rpart") returns the learner without
having to explicitly create a new R6 object. We heavily use sugar functions throughout
this book and provide the equivalent “full form” for complete detail at the end of each
chapter. The sugar functions are designed to cover the majority of use cases for most users,
knowledge about the full R6 backend is only required if you want to build custom objects
or extensions.

Many object names in mlr3 are standardized according to the convention:
mlr_<type>_<key> where <type> will be tasks, learners, measures, and other
classes that will be covered in the book, and <key> refers to the ID of the object. To
simplify the process of constructing objects, you only need to know the object key
and the sugar function for constructing the type. For example: mlr_tasks_mtcars
becomes tsk("mtcars");mlr_learners_regr.rpart becomes lrn("regr.rpart"); and
mlr_measures_regr.mse becomes msr("regr.mse"). Throughout this book, we will refer
to all objects using this abbreviated form.

Dictionaries

mlr3 uses dictionaries to store R6 classes, which associate keys (unique identifiers) with
objects (R6 objects). Values in dictionaries are often accessed through sugar functions
that retrieve objects from the relevant dictionary, for example lrn("regr.rpart") is a
wrapper around mlr_learners$get ("regr.rpart") and is thus a simpler way to load a
decision tree learner from mlr_learners. We use dictionaries to group large collections
of relevant objects so they can be listed and retrieved easily. For example, you can see
an overview of available learners (that are in loaded packages) and their properties with
as.data.table(mlr_learners) or by calling the sugar function without any arguments,
e.g. lrnQ).


https://www.rdocumentation.org/packages/data.table/topics/copy
https://mlr3.mlr-org.com/reference/mlr_learners.html
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mlr3viz

mlr3viz includes all plotting functionality in mlr3 and uses ggplot2 under the hood.
We use theme_minimal() in all our plots to unify our aesthetic, but as with all ggplot
outputs, users can fully customize this. mlr3viz extends fortify and autoplot for use
with common mlr3 outputs including Prediction, Learner, and BenchmarkResult ob-
jects (which we will introduce and cover in the next chapters). We will cover major plot
types throughout the book. The best way to learn about mlr3viz is through experimenta-
tion; load the package and see what happens when you run autoplot on an mlr3 object.
Plot types are documented in the respective manual page that can be accessed through
7autoplot.<class>, for example, you can find different types of plots for regression tasks
by running 7autoplot.TaskRegr.

1.7 Design Principles

i This section covers advanced ML or technical details.

Learning from over a decade of design and adaptation from mlr to mlr3, we now follow
these design principles in the m1r3 ecosystem:

¢ Object-oriented programming. We embrace R6 for a clean, object-oriented design,
object state changes, and reference semantics. This means that the state of common
objects (e.g. tasks (Section 2.1) and learners (Section 2.2)) is encapsulated within the
object, for example, to keep track of whether a model has been trained, without the user
having to worry about this. We also use inheritance to specialize objects, e.g. all learners
are derived from a common base class that provides basic functionality.

e« Tabular data. Embrace data.table for its top-notch computational performance as well
as tabular data as a structure that can be easily processed further.

e Unified tabular input and output data formats. This considerably simplifies the
API and allows easy selection and “split-apply-combine” (aggregation) operations. We
combine data.table and R6 to place references to non-atomic and compound objects in
tables and make heavy use of list columns.

¢ Defensive programming and type safety. All user input is checked with checkmate
(Lang 2017). We use data.table, which has behavior that is more consistent than several
base R methods (e.g., indexing data.frames simplifies the result when the drop argument
is omitted). And we have extensive unit tests!

e Light on dependencies. One of the main maintenance burdens for mlr was to keep
up with changing learner interfaces and behavior of the many packages it depended on.
We require far fewer packages in mlr3, which makes installation and maintenance easier.
We still provide the same functionality, but it is split into more packages that have fewer
dependencies individually.

e Separation of computation and presentation. Most packages of the mlr3 ecosystem
focus on processing and transforming data, applying ML algorithms, and computing re-
sults. Our core packages do not provide visualizations because their dependencies would
make installation unnecessarily complex, especially on headless servers (i.e., computers
without a monitor where graphical libraries are not installed). Hence, visualizations of
data and results are provided in mlr3viz.


https://mlr3viz.mlr-org.com
https://cran.r-project.org/package=ggplot2
https://www.rdocumentation.org/packages/ggplot2/topics/theme_minimal
https://mlr3viz.mlr-org.com
https://mlr3.mlr-org.com
https://mlr3.mlr-org.com/reference/Prediction.html
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/BenchmarkResult.html
https://mlr3viz.mlr-org.com
https://cran.r-project.org/package=mlr
https://mlr3.mlr-org.com
https://mlr3.mlr-org.com
https://cran.r-project.org/package=R6
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=checkmate
https://cran.r-project.org/package=mlr
https://mlr3.mlr-org.com
https://mlr3.mlr-org.com
https://mlr3viz.mlr-org.com
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In this chapter, we will introduce the m1r3 objects and corresponding R6 classes that imple-
ment the essential building blocks of machine learning. These building blocks include the
data (and the methods for creating training and test sets), the machine learning algorithm
(and its training and prediction process), the configuration of a machine learning algorithm
through its hyperparameters, and evaluation measures to assess the quality of predictions.

In the simplest definition, machine learning (ML) is the process of learning models of re-
lationships from data. Supervised learning is a subfield of ML in which datasets consist
of labeled observations, which means that each data point consists of features, which are
variables to make predictions from, and a target, which is the quantity that we are try-
ing to predict. For example, predicting a car’s miles per gallon (target) based on the car’s
properties (features) such as horsepower and the number of gears is a supervised learning
problem, which we will return to several times in this book. In m1r3, we refer to datasets,
and their associated metadata as tasks (Section 2.1). The term ‘task’ is used to refer to the
prediction problem that we are trying to solve. Tasks are defined by the features used for
prediction and the targets to predict, so there can be multiple tasks associated with any
given dataset. For example, predicting miles per gallon (mpg) from horsepower is one task,
predicting horsepower from mpg is another task, and predicting the number of gears from
the car’s model is yet another task.

Supervised learning can be further divided into regression — which is the prediction of nu-
meric target values, e.g. predicting a car’s mpg — and classification — which is the prediction
of categorical values/labels, e.g., predicting a car’s model. Chapter 13 also discusses other
tasks, including cost-sensitive classification and unsupervised learning. For any supervised
learning task, the goal is to build a model that captures the relationship between the fea-
tures and target, often with the goal of training the model to learn relationships about the
data so it can make predictions for new and previously unseen data. A model is formally a
mapping from a feature vector to a prediction. A prediction can take many forms depending
on the task; for example, in classification this can be a predicted label, or a set of predicted
probabilities or scores. Models are induced by passing training data to machine learning
algorithms, such as decision trees, support vector machines, neural networks, and many
more. Machine learning algorithms are called learners in mlr3 (Section 2.2) as, given data,
they learn models. Each learner has a parameterized space that potential models are drawn
from and during the training process, these parameters are fitted to best match the data.
For example, the parameters could be the coefficients used for individual features when
training a linear regression model. During training, most machine learning algorithms are
‘fitted’/‘trained’ by optimizing a loss-function that quantifies the mismatch between ground
truth target values in the training data and the predictions of the model.

13

Machine
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For a model to be most useful, it should generalize beyond the training data to make
‘good’ predictions (Section 2.2.2) on new and previously ‘unseen’ (by the model) data. The
simplest way to test this, is to split data into training data and test data — where the model is
trained on the training data and then the separate test data is used to evaluate models in an
unbiased way by assessing to what extent the model has learned the true relationships that
underlie the data (Chapter 3). This evaluation procedure estimates a model’s generalization
error, i.e., how well we expect the model to perform in general. There are many ways to
evaluate models and to split data for estimating generalization error (Section 3.2).

This brief overview of ML provides the basic knowledge required to use mlr3 and is summa-
rized in Figure 2.1. In the rest of this book, we will provide introductions to methodology
when relevant. For texts about ML, including detailed methodology and underpinnings of
different algorithms, we recommend Hastie, Friedman, and Tibshirani (2001), James et al.
(2014), and Bishop (2006).

In the next few sections we will look at the building blocks of m1r3 using regression as an
example, we will then consider how to extend this to classification in Section 2.5.

Repeat
= Resampling

Performance

Measure

Figure 2.1: General overview of the machine learning process.

Prediction

2.1 Tasks

Tasks are objects that contain the (usually tabular) data and additional metadata that
define a machine learning problem. The metadata contain, for example, the name of the
target feature for supervised machine learning problems. This information is extracted au-
tomatically when required, so the user does not have to specify the prediction target every
time a model is trained.

2.1.1 Constructing Tasks

mlr3 includes a few predefined machine learning tasks in the mlr_tasks Dictionary.
mlr_tasks

<DictionaryTask> with 22 stored values

Keys: ames_housing, bike_sharing, boston_housing, breast_cancer,
california_housing, german_credit, ilpd, iris, kc_housing,


https://mlr3.mlr-org.com/reference/mlr_tasks.html
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moneyball, mtcars, optdigits, penguins, penguins_simple, pima,
ruspini, sonar, spam, titanic, usarrests, wine, zoo

To get a task from the dictionary, use the tsk() function and assign the return value to a
new variable. Below we retrieve tsk("mtcars"), which uses the mtcars dataset:

tsk_mtcars = tsk("mtcars")
tsk_mtcars

<TaskRegr:mtcars> (32 x 11): Motor Trends
* Target: mpg
* Properties: -
* Features (10):
- dbl (10): am, carb, cyl, disp, drat, gear, hp, gsec, vs, wt

Running tsk() without any arguments will list all the tasks in the dictionary, this also
works for all other sugar constructors that you will encounter throughout the book.

@ Help Pages

Usually in R, the help pages of functions can be queried with ?. The same is true
of R6 classes, so if you want to find the help page of the mtcars task you could use
?mlr_tasks_mtcars. We have also added a $help() method to many of our classes,
which allows you to access the help page from any instance of that class, for example:
tsk("mtcars")$help().

To create your own regression task, you will need to construct a new instance of TaskRegr.
The simplest way to do this is with the function as_task_regr () to convert a data.frame
type object to a regression task, specifying the target feature by passing this to the target
argument. By example, we will ignore that mtcars is already available as a predefined task
in m1r3. In the code below we load the datasets: :mtcars dataset, subset the data to only
include columns "mpg", "cyl", "disp", print the modified data’s properties, and then set
up a regression task called "cars" (id = "cars") in which we will try to predict miles per
gallon (target = "mpg") from the number of cylinders ("cyl") and displacement ("disp"):

data("mtcars", package = "datasets")
mtcars_subset = subset(mtcars, select = c("mpg", "cyl", "disp"))
str(mtcars_subset)

'data.frame': 32 obs. of 3 variables:

$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$cyl :num 66468638446 ...

$ disp: num 160 160 108 258 360 ...

tsk_mtcars = as_task_regr(mtcars_subset, target = "mpg", id = "cars")

The data can be in any tabular format, e.g. a data.frame(), data.table(), or tibble().
The target argument specifies the prediction target column. The id argument is optional
and specifies an identifier for the task that is used in plots and summaries; if omitted the
variable name of the data will be used as the id.

tsk()

TaskRegr

as_task_regr()


https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://www.rdocumentation.org/packages/datasets/topics/mtcars
https://mlr3.mlr-org.com/reference/TaskRegr.html
https://mlr3.mlr-org.com/reference/as_task_regr.html
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@ UTF8 Column Names

As many machine learning models do not work properly with arbitrary UTFS8
names, mlr3 defaults to throwing an error if any of the column names passed to
as_task_regr() (and other task constructors) contain a non-ASCII character or
do not comply with R’s variable naming scheme. Therefore, we recommend con-
verting names with make.names () if possible. You can bypass this check by setting
options(mlr3.allow_utf8_names = TRUE) (but do not be surprised if errors occur
later, especially when passing objects to other packages).

Printing a task provides a summary and in this case, we can see the task has 32 observa-
tions and 3 columns (32 x 3), of which mpg is the target, there are no special properties
(Properties: -), and there are 2 features stored in double-precision floating point format.

tsk_mtcars

<TaskRegr:cars> (32 x 3)
* Target: mpg
* Properties: -
* Features (2):
- dbl (2): cyl, disp

We can plot the task using the mlr3viz package, which gives a graphical summary of the

distribution of the target and feature values:

library(mlr3viz)
autoplot (tsk_mtcars, type = "pairs")

2.1.2 Retrieving Data

We have looked at how to create tasks to store data and metadata, now we will look at how
to retrieve the stored data.

Various fields can be used to retrieve metadata about a task. The dimensions, for example,
can be retrieved using $nrow and $ncol:

c(tsk_mtcars$nrow, tsk_mtcars$ncol)

[1] 32 3
The names of the feature and target columns are stored in the $feature_names and

$target_names slots, respectively.

c(Features = tsk_mtcars$feature_names,
Target = tsk_mtcars$target_names)

Featuresl Features2 Target
Ilcylll Ildispll Ilmpgll

The columns of a task have unique character-valued names and the rows are identified by
unique natural numbers, called row IDs. They can be accessed through the $row_ids field:


https://mlr3.mlr-org.com/reference/as_task_regr.html
https://www.rdocumentation.org/packages/base/topics/make.names
https://mlr3viz.mlr-org.com
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head (tsk_mtcars$row_ids)

[1] 123456

Row IDs are not used as features when training or predicting but are metadata that allow
access to individual observations. Note that row IDs are not the same as row numbers. This
is best demonstrated by example, below we create a regression task from random data, print
the original row IDs; which correspond to row numbers 1-5, then we filter three rows (we will
return to this method just below) and print the new row IDs, which no longer correspond
to the row numbers.

task = as_task_regr(data.frame(x = runif(5), y = runif(5)),
target = "y")
task$row_ids

[1] 12345

task$filter(c(4, 1, 3))
task$row_ids

[1] 1 34

This design decision allows tasks and learners to transparently operate on real database
management systems, where primary keys are required to be unique, but not necessarily
consecutive. See Section 10.4 for more information on using databases as data backends for
tasks

The data contained in a task can be accessed through $data (), which returns a data.table
object. This method has optional rows and cols arguments to specify subsets of the data
to retrieve.

# retrieve all data
tsk_mtcars$data()

mpg cyl disp

1: 21.0 6 160.0
2: 21.0 6 160.0
3: 22.8 4 108.0
4: 21.4 6 258.0
5: 18.7 8 360.0
28: 30.4 4 95.1
29: 156.8 8 351.0
30: 19.7 6 145.0
31: 16.0 8 301.0
32: 21.4 4 121.0

# retrieve data for rows with IDs 1, 5, and 10 and all feature columns
tsk_mtcars$data(rows = c(1, 5, 10), cols = tsk_mtcars$feature_names)

cyl disp


https://www.rdocumentation.org/packages/data.table/topics/data.table-package
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1 6 160.0
8 360.0
3 6 167.6

@ Accessing Rows by Number

You can work with row numbers instead of row IDs by using the $row_ids field to
extract the row ID corresponding to a given row number:

# select the 2nd row of the task by extracting the second row_id:
tsk_mtcars$data(rows = task$row_ids[2])

You can always use ‘standard’ R methods to extract summary data from a task, for example,
to summarize the underlying data:

summary (as.data.table(tsk_mtcars))

mpg cyl disp
Min. :10.4 Min. :4.00 Min. :71.1
1st Qu.:15.4 1st Qu.:4.00 1st Qu.:120.8
Median :19.2 Median :6.00 Median :196.3
Mean :20.1 Mean :6.19 Mean :230.7
3rd Qu.:22.8 3rd Qu.:8.00 3rd Qu.:326.0
Max. :33.9 Max. :8.00 Max. :472.0

2.1.3 Task Mutators

After a task has been created, you may want to perform operations on the task such as
filtering down to subsets of rows and columns, which is often useful for manually creating
train and test splits or to fit models on a subset of given features. Above we saw how to
access subsets of the underlying dataset using $data(), however, this will not change the
underlying task. Therefore, we provide mutators, which modify the given Task in place,
which can be seen in the examples below.

Subsetting by features (columns) is possible with $select () with the desired feature names
passed as a character vector and subsetting by observations (rows) is performed with
$filter () by passing the row IDs as a numeric vector.

tsk_mtcars_small = tsk("mtcars") # initialize with the full task
tsk_mtcars_small$select("cyl") # keep only one feature
tsk_mtcars_small$filter(2:3) # keep only these rows
tsk_mtcars_small$data()

mpg cyl
1: 21.0 6
2: 22.8 4

As R6 uses reference semantics (Section 1.5.1), you need to use $clone() if you want to
modify a task while keeping the original object intact.
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# the wrong way

tsk_mtcars = tsk("mtcars")
tsk_mtcars_wrong = tsk_mtcars
tsk_mtcars_wrong$filter(1:2)
# original data affected
tsk_mtcars$head ()

mpg am carb cyl disp drat gear hp gsec vs

19

wt

1. 21 1 4 6 160 3.9 4 110 16.46 0 2.620
21 1 4 6 160 3.9 4 110 17.02 0 2.875

# the right way

tsk_mtcars = tsk("mtcars")
tsk_mtcars_right = tsk_mtcars$clone()
tsk_mtcars_right$filter(1:2)

# original data unaffected
tsk_mtcars$head ()

mpg am carb cyl disp drat gear hp gsec vs

1: 21.0 1 4 6 160 3.90 4 110 16.46 O
2: 21.0 1 4 6 160 3.90 4 110 17.02 O
3: 22.8 1 1 4 108 3.85 4 93 18.61 1
4: 21.4 0 1 6 258 3.08 3 110 19.44 1
5: 18.7 0 2 8 360 3.15 3 175 17.02 O
6: 18.1 0 1 6 225 2.76 3 105 20.22 1

To add extra rows and columns to a task, you can use $rbind () and $cbind () respectively:

tsk_mtcars_small$cbind( # add another column
data.frame(disp = c(150, 160))

)

tsk_mtcars_small$rbind( # add another row
data.frame(mpg = 23, cyl = 5, disp = 170)

)

tsk_mtcars_small$data()

mpg cyl disp
1: 21.0 6 150
2: 22.8 4 160
3: 23.0 5 170

W wWwwNnNDN

wt

.620
.875
.320
.215
.440
.460

2.2 Learners

Objects of class Learner provide a unified interface to many popular machine learning

algorithms in R. The mlr_learners dictionary contains all the learners available in m1r3.

We will discuss the available learners in Section 2.7; for now, we will just use a regression

Learner

mlr_learners


https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/mlr_learners.html

1rn()

Training

Predicting

$train()

$model
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tree learner as an example to discuss the Learner interface. As with tasks, you can access
learners from the dictionary with a single sugar function, in this case, 1rn().

lrn("regr.rpart")

<LearnerRegrRpart:regr.rpart>: Regression Tree

Model: -

Parameters: xval=0

Packages: mlr3, rpart

Predict Types: [response]

Feature Types: logical, integer, numeric, factor, ordered
Properties: importance, missings, selected_features, weights

* X X ¥ X *x

All Learner objects include the following metadata, which can be seen in the output above:

o $feature_types: the type of features the learner can handle.

¢ $packages: the packages required to be installed to use the learner.

e $properties: the properties of the learner. For example, the “missings” properties means
a model can handle missing data, and “importance” means it can compute the relative
importance of each feature.

o $predict_types: the types of prediction that the model can make (Section 2.2.2).

o $param_set: the set of available hyperparameters (Section 2.2.3).

To run a machine learning experiment, learners pass through two stages (Figure 2.2):

e Training: A training Task is passed to the learner’s $train() function which trains and
stores a model, i.e., the learned relationship of the features to the target.

¢ Predicting: New data, potentially a different partition of the original dataset, is passed to
the $predict () method of the trained learner to predict the target values.

2.2.1 Training

In the simplest use case, models are trained by passing a task to a learner with the $train()
method:

# load mtcars task

tsk_mtcars = tsk("mtcars")

# load a regression tree

lrn_rpart = lrn("regr.rpart")

# pass the task to the learner via $train()
lrn_rpart$train(tsk_mtcars)

After training, the fitted model is stored in the $model field for future inspection and
prediction:

# inspect the trained model
lrn_rpart$model

n= 32

node), split, n, deviance, yval
* denotes terminal node


https://mlr3.mlr-org.com/reference/mlr_sugar.html
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—[$train() on Training Data}

r—[ $predict () on New Data to Get Predictions}

$model

Figure 2.2: Overview of the different stages of a learner. Top — data (features and a target)
are passed to an (untrained) learner. Bottom — new data are passed to the trained model
which makes predictions for the ‘missing’ target column.

1) root 32 1126.00 20.09
2) cyl>=5 21 198.50 16.65
4) hp>=192.5 7 28.83 13.41 *
5) hp< 192.5 14 59.87 18.26 *
3) cyl< 5 11 203.40 26.66 *

We see that the regression tree has identified features in the task that are predictive of the
target (mpg) and used them to partition observations. The textual representation of the
model depends on the type of learner. For more information on any model see the learner
help page, which can be accessed in the same way as tasks with the help() field, e.g.,
lrn_rpart$help().

2.2.1.1 Partitioning Data

When assessing the quality of a model’s predictions, you will likely want to partition your
dataset to get a fair and unbiased estimate of a model’s generalization error. In Chapter 3
we will look at resampling and benchmark experiments, which will go into more detail about
performance estimation but for now, we will just discuss the simplest method of splitting
data using the partition() function. This function creates index sets that randomly split
the given task into two disjoint sets: a training set (67% of the total data by default) and
a test set (the remaining 33% of the total data not in the training set).

partition()


https://mlr3.mlr-org.com/reference/partition.html

$predict()
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splits = partition(tsk_mtcars)
splits

$train
[1] 1 3 4 5 7 8 9 10 11 12 14 19 20 21 22 24 25 26 27 28 31

$test
[1] 2 6 13 15 16 17 18 23 29 30 32

$validation

integer (0)

When training we will tell the model to only use the training data by passing the row IDs
from partition to the row_ids argument of $train():

lrn_rpart$train(tsk_mtcars, row_ids = splits$train)

Now we can use our trained learner to make predictions on new data.

2.2.2 Predicting

Predicting from trained models is as simple as passing your data as a Task to the $predict ()
method of the trained Learner.

Carrying straight on from our last example, we will call the $predict() method of our
trained learner and again will use the row_ids argument, but this time to pass the IDs of
our test set:

prediction = lrn_rpart$predict (tsk_mtcars, row_ids = splits$test)

The $predict() method returns an object inheriting from Prediction, in this case
PredictionRegr as this is a regression task.

PredictionRegr

prediction

<PredictionRegr> for 11 observations:
row_ids truth response

2 21.0 17.25

6 18.1 17.25

13 17.3 17.25

29 15.8 17.25

30 19.7 17.25

32 21.4 26.61

The row_ids column corresponds to the row IDs of the predicted observations. The truth
column contains the ground truth data if available, which the object extracts from the task,
in this case: tsk_mtcars$truth(splits$test). Finally, the response column contains
the values predicted by the model. The Prediction object can easily be converted into a
data.table or data.frame using as.data.table() /as.data.frame() respectively.


https://mlr3.mlr-org.com/reference/Prediction.html
https://mlr3.mlr-org.com/reference/PredictionRegr.html
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All data in the above columns can be accessed directly, for example, to get the first two
predicted responses:

prediction$response[1:2]

[1] 17.25 17.25
Similarly to plotting Tasks, mlr3viz provides an autoplot() method for Prediction ob-

jects.

library (mlr3viz)
prediction = lrn_rpart$predict (tsk_mtcars, splits$test)
autoplot (prediction)

35

30

175 20.0 22.5 25.0
response

Figure 2.3: Comparing predicted and ground truth values for the mtcars dataset.

In the examples above we made predictions by passing a task to $predict (). However, if you
would rather pass a data.frame type object directly, then you can use $predict_newdata().
Note, the truth column values are all NA, as we did not include a target column in the
generated data.

mtcars_new = data.table(cyl = c(5, 6), disp = c(100, 120),
hp = c(100, 150), drat = c(4, 3.9), wt = c(3.8, 4.1),
gsec = c(18, 19.5), vs = c(1, 0), am = c(1, 1),
gear = c(6, 4), carb = c(3, 5))

prediction = lrn_rpart$predict_newdata(mtcars_new)

prediction

<PredictionRegr> for 2 observations:
row_ids truth response

1 NA 17.25

2 NA 17.25

Changing the Prediction Type

While predicting a single numeric quantity is the most common prediction type in regression,
it is not the only prediction type. Several regression models can also predict standard errors.


https://mlr3viz.mlr-org.com
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$param_ set

24 Data and Basic Modeling

To predict this, the $predict_type field of a LearnerRegr must be changed from “response”
(the default) to "se" before training. The "rpart" learner we used above does not support
predicting standard errors, so in the example below we will use a linear regression model
(1rn("regr.1m")).

library(mlr3learners)

lrn_1m = lrn("regr.lm", predict_type = "se")
lrn_Im$train(tsk_mtcars, splits$train)
lrn_lm$predict (tsk_mtcars, splits$test)

<PredictionRegr> for 11 observations:
row_ids truth response se

2 21.0 20.79 2.089

6 18.1 20.01 1.739

13 17.3 15.52 1.386

29 15.8 23.79 3.839

30 19.7 18.93 2.340

32 21.4 22.97 2.518

Now the output includes an se column as desired. In Section 2.5.3 we will see prediction
types playing an even bigger role in the context of classification.

Having covered the unified train/predict interface, we can now look at how to use hyperpa-
rameters to configure these methods for individual algorithms.

2.2.3 Hyperparameters

Learners encapsulate a machine learning algorithm and its hyperparameters, which affect
how the algorithm is run and can be set by the user. Hyperparameters may affect how a
model is trained or how it makes predictions and deciding how to set hyperparameters can
require expert knowledge. Hyperparameters can be optimized automatically (Chapter 4),
but in this chapter we will focus on how to set them manually.

2.2.3.1 Paradox and Parameter Sets

We will continue our running example with a regression tree learner. To access the hyper-
parameters in the decision tree, we use $param_set:

lrn_rpart$param_set

<ParamSet (10)>
id class lower upper nlevels default value
1: cp ParamDbl 0 1 Inf 0.01 [NULL]
2: keep_model ParamLgl NA NA 2 FALSE [NULL]
3: maxcompete ParamInt 0 Inf Inf 4 [NULL]
4: maxdepth ParamInt 1 30 30 30 [NULL]
5: maxsurrogate ParamInt 0 Inf Inf 5 [NULL]
6: minbucket ParamInt 1 Inf Inf <NoDefault[0]> [NULL]
7: minsplit ParamInt 1 Inf Inf 20 [NULL]
8: surrogatestyle ParamInt 0 1 2 0 [NULL]
9: usesurrogate ParamInt 0 3 2 [NULL]


https://mlr3.mlr-org.com/reference/LearnerRegr.html
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10: xval ParamInt 0 Inf Inf 10 0

The output above is a ParamSet object, supplied by the paradox package. These objects
provide information on hyperparameters including their name (id), data type (class),
technically valid ranges for hyperparameter values (lower, upper), the number of levels
possible if the data type is categorical (nlevels), the default value from the underlying
package (default), and finally the set value (value). The second column references classes
defined in paradox that determine the class of the parameter and the possible values it can
take. Table 2.1 lists the possible hyperparameter types, all of which inherit from Domain.

Table 2.1: Hyperparameter classes and the type of hyperparameter they represent.

Hyperparameter Class Hyperparameter Type

ParamDbl" Real-valued (numeric)
ParamInt" Integer

ParamFct" Categorical (factor)
ParamLgl" Logical / Boolean
ParamUty" Untyped

In our decision tree example, we can infer from the ParamSet output that:

e cp must be a “double” (ParamDbl) taking values between 0 (lower) and 1 (upper) with
a default of 0.01 (default).

o keep_model must be a “logical” (ParamLgl) taking values TRUE or FALSE with default
FALSE

o xval must be an “integer” (ParamInt) taking values between 0 and Inf with a default of
10 and has a set value of 0.

In rare cases (we try to minimize it as much as possible), hyperparameters are initialized to
values which deviate from the default in the underlying package. When this happens, the
reason will always be given in the learner help page. In the case of lrn("regr.rpart"), the
xval hyperparameter is initialized to 0 because xval controls internal cross-validations and
if a user accidentally leaves this at the default 10, model training can take an unnecessarily
long time.

2.2.3.2 Getting and Setting Hyperparameter Values

Now we have looked at how hyperparameter sets are stored, we can think about getting and
setting them. Returning to our decision tree, say we are interested in growing a tree with
depth 1, also known as a “decision stump”, where data is split only once into two terminal
nodes. From the parameter set output, we know that the maxdepth parameter has a default
of 30 and that it takes integer values.

There are a few different ways we could change this hyperparameter. The simplest way is
during construction of the learner by passing the hyperparameter name and new value to
1rn():

lrn_rpart = lrn("regr.rpart", maxdepth = 1)

We can get a list of non-default hyperparameters (i.e., those that have been set) by using
$param_set$values:

ParamSet


https://paradox.mlr-org.com/reference/ParamSet.html
https://paradox.mlr-org.com
https://paradox.mlr-org.com
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lrn_rpart$param_set$values

$maxdepth
(11 1

$xval
[11 ©

Now we can see that maxdepth = 1 (as we discussed above xval = 0 is changed during
construction) and the learned regression tree reflects this:

lrn_rpart$train(tsk("mtcars"))$model
n= 32

node), split, n, deviance, yval
* denotes terminal node

1) root 32 1126.0 20.09
2) cyl>=5 21 198.5 16.65 *
3) cyl< 5 11 203.4 26.66 *

The $values field simply returns a list of set hyperparameters, so another way to update
hyperparameters is by updating an element in the list:

lrn_rpart$param_set$values$maxdepth = 2
lrn_rpart$param_set$values

$maxdepth
[11 2

$xval
[11 ©

# now with depth 2
lrn_rpart$train(tsk("mtcars"))$model

n= 32

node), split, n, deviance, yval
* denotes terminal node

1) root 32 1126.00 20.09
2) cyl>=5 21 198.50 16.65
4) hp>=192.5 7  28.83 13.41 *
5) hp< 192.5 14 59.87 18.26 *
3) cyl< 5 11 203.40 26.66 *

To set multiple values at once we recommend either setting these during construction or
using $set_values(), which updates the given hyperparameters (argument names) with
the respective values.
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lrn_rpart = lrn("regr.rpart", maxdepth = 3, xval = 1)
lrn_rpart$param_set$values

$maxdepth
[11 3

$xval

(1] 1
# or with set_values
lrn_rpart$param_set$set_values(xval = 2, cp = 0.5)

lrn_rpart$param_set$values

$cp
[1] 0.5

$maxdepth
(11 3

$xval
[1] 2

A\ Setting Hyperparameters Using a list

As 1rn_rpart$param_set$values returns a 1ist, some users may be tempted to set
hyperparameters by passing a new 1list to $values — this would work but we do not
recommend it. This is because passing a 1ist will wipe any existing hyperparameter

values if they are not included in the list. For example:

# set xval and cp

lrn_rpart_params = lrn("regr.rpart", xval = 0, cp = 1)

# passing maxdepth through a list, removing all other values
lrn_rpart_params$param_set$values = list(maxdepth = 1)

# we have removed xval and cp by mistake
lrn_rpart_params$param_set$values

$maxdepth
[11 1

# now with set_values

lrn_rpart_params = lrn("regr.rpart", xval = 0, cp = 1)
lrn_rpart_params$param_set$set_values(maxdepth = 1)
lrn_rpart_params$param_set$values

$cp
[1] 1

$maxdepth
(1] 1

27
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$xval
[11 ©

Whichever method you choose, all have safety checks to ensure your new values fall within
the allowed parameter range:

lrn("regr.rpart", cp = 2, maxdepth = 2)
Error in self$assert(xs, sanitize = TRUE): Assertion on 'xs' failed: cp: Element 1 is not <= 1.

2.2.3.3 Hyperparameter Dependencies

1 This section covers advanced ML or technical details.

More complex hyperparameter spaces may include dependencies, which occur when setting
a hyperparameter is conditional on the value of another hyperparameter; this is most im-
portant in the context of model tuning (Chapter 4). One such example is a support vector
machine (1rn("regr.svm")). The field $deps returns a data.table, which lists the hyper-
parameter dependencies in the Learner. For example we can see that the cost (id-column)
parameter is dependent on the type (on-column) parameter.

lrn("regr.svm")$param_set$deps

id on cond
coefO kernel <Condition:CondAnyOf>
cost  type <Condition:CondAnyOf>
degree kernel <Condition:CondEqual>
epsilon  type <Condition:CondEqual>
gamma kernel <Condition:CondAnyOf>
nu type <Condition:CondEqual>

O WN -

The cond column tells us what the condition is, which will either mean that id can be set
if on equals a single value (CondEqual) or any value in the listed set (CondAnyOf).

lrn("regr.svm")$param_set$deps[[1, "cond"]]
CondAny0f: x %in% {polynomial, sigmoid}
lrn("regr.svm")$param_set$deps[[3, "cond"]]

CondEqual: x == polynomial

This tells us that the parameter cost should only be set if the type parameter is one of
"eps-regression" or "nu-regression", and degree should only be set if kernel is equal
to "polynomial".

The Learner will error if dependent hyperparameters are set when their conditions are not
met:


https://paradox.mlr-org.com/reference/condition_test.html
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# error as kernel is not polynomial
lrn("regr.svm", kernel = "linear", degree = 1)

Error in self$assert(xs, sanitize = TRUE): Assertion on 'xs' failed: degree: can only be set if tt

# works because kernel is polynomial
lrn("regr.svm", kernel = "polynomial", degree = 1)

<LearnerRegrSVM:regr.svm>: Support Vector Machine
Model: -

Parameters: degree=1, kernel=polynomial
Packages: mlr3, mlr3learners, e1l071

Predict Types: [response]

Feature Types: logical, integer, numeric
Properties: -

* ¥ X X X %

2.2.4 Baseline Learners

Before we move on to learner evaluation, we will highlight an important class of learners.

These are extremely simple or ‘weak’ learners known as baselines. Baselines are useful in  Baselines
model comparison (Chapter 3) and as fallback learners (Section 5.1.1, Section 10.2.2). For
regression, we have implemented the baseline lrn("regr.featureless"), which always

predicts new values to be the mean (or median, if the robust hyperparameter is set to

TRUE) of the target in the training data:

# generate data

df = as_task_regr(data.frame(x = runif(1000), y = rnorm(1000, 2, 1)),
target = "y")

lrn("regr.featureless")$train(df, 1:995)$predict(df, 996:1000)

<PredictionRegr> for 5 observations:
row_ids truth response
996 2.581 1.976

997 2.344 1.976
998 2.869 1.976
999 1.054 1.976
1000 0.391 1.976

It is good practice to test all new models against a baseline, and also to include baselines
in experiments with multiple other models. In general, a model that does not outperform
a baseline is a ‘bad’ model, on the other hand, a model is not necessarily ‘good’ if it
outperforms the baseline.

2.3 Evaluation

Perhaps the most important step of the applied machine learning workflow is evaluating
model performance. Without this, we would have no way to know if our trained model
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makes very accurate predictions, is worse than randomly guessing, or somewhere in between.
We will continue with our decision tree example to establish if the quality of our predictions
is ‘good’, first we will rerun the above code so it is easier to follow along.

lrn_rpart = lrn("regr.rpart")

tsk_mtcars = tsk("mtcars")

splits = partition(tsk_mtcars)
lrn_rpart$train(tsk_mtcars, splits$train)

prediction = lrn_rpart$predict (tsk_mtcars, splits$test)

2.3.1 Measures

The quality of predictions is evaluated using measures that compare them to the ground

truth data for supervised learning tasks. Similarly to Tasks and Learners, the available

measures in m1r3 are stored in a dictionary called mlr_measures and can be accessed with
mlr_measusrés msr():

as.data.table(msr())

key label task_type

1: aic  Akaike Information Criterion <NA>

2: bic Bayesian Information Criterion <NA>

3: ci Default CI <NA>

4: ci.con_z Conservative-Z CI <NA>

5: ci.cor_t Corrected-T CI <NA>

71: sim.jaccard Jaccard Similarity Index <NA>
T72: sim.phi Phi Coefficient Similarity <NA>
73: time_both Elapsed Time <NA>
74: time_predict Elapsed Time <NA>
75: time_train Elapsed Time <NA>

4 variable(s) not shown: [packages, predict_type, properties, task_properties]

All measures implemented in m1r3 are defined primarily by three components: 1) the func-
tion that defines the measure; 2) whether a lower or higher value is considered ‘good’; and
3) the range of possible values the measure can take. As well as these defining elements,
other metadata are important to consider when selecting and using a Measure, including if
the measure has any special properties (e.g., requires training data), the type of predictions
the measure can evaluate, and whether the measure has any ‘control parameters’. All this

Measure information is encapsulated in the Measure object. By example, let us consider the mean
absolute error (MAE):

measure = msr('"regr.mae")
measure

<MeasureRegrSimple:regr.mae>: Mean Absolute Error
* Packages: mlr3, mlr3measures

* Range: [0, Inf]

* Minimize: TRUE

* Average: macro
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* Parameters: 1list()
* Properties: -
* Predict type: response

This measure compares the absolute difference (‘error’) between true and predicted values:
f(y,9) = |y — y|. Lower values are considered better (Minimize: TRUE), which is intuitive
as we would like the true values, y, to be identical (or as close as possible) in value to
the predicted values, . We can see that the range of possible values the learner can take is
from 0 to co (Range: [0, Infl), it has no special properties (Properties: -), it evaluates
response type predictions for regression models (Predict type: response), and it has no
control parameters (Parameters: list()).

Now let us see how to use this measure for scoring our predictions.

2.3.2 Scoring Predictions

Usually, supervised learning measures compare the difference between predicted values and
the ground truth. m1r3 simplifies the process of bringing these quantities together by storing
the predictions and true outcomes in the Prediction object as we have already seen.

prediction

<PredictionRegr> for 11 observations:
row_ids truth response

6 18.1 24.43

8 24.4 24.43

9 22.8 24.43

27 26.0 24.43

28 30.4 24.43

31 15.0 16.22

To calculate model performance, we simply call the $score() method of a Prediction
object and pass as a single argument the measure that we want to compute:

prediction$score(measure)

regr.mae
2.937

Note that all task types have default measures that are used if the argument to $score()
is omitted, for regression this is the mean squared error (msr("regr.mse")), which is the
squared difference between true and predicted values: f(y,7) = (y — )2, averaged over the
test set.

It is possible to calculate multiple measures at the same time by passing multiple mea-
sures to $score(). For example, below we compute performance for mean squared error
("regr.mse") and mean absolute error ("regr.mae") — note we use msrs() to load multiple
measures at once.

measures = msrs(c("regr.mse", "regr.mae"))
prediction$score (measures)

$score()

msrs()
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regr.mse regr.mae
14.603 2.937

2.3.3 Technical Measures

i This section covers advanced ML or technical details.

mlr3 also provides measures that do not quantify the quality of the predictions of a model,
but instead provide ‘meta’-information about the model. These include:

e msr("time_train") — The time taken to train a model.

e msr("time_predict") — The time taken for the model to make predictions.

e msr("time_both") — The total time taken to train the model and then make predictions.

e msr("selected_features") — The number of features selected by a model, which can
only be used if the model has the “selected features” property.

For example, we could score our decision tree to see how many seconds it took to train the

model and make predictions:

measures = msrs(c("time_train", "time_predict", "time_both"))
prediction$score(measures, learner = lrn_rpart)

time_train time_predict time_both
0.003 0.002 0.005

Notice a few key properties of these measures:

1) time_both is simply the sum of time_train and time_predict.
2) We had to pass learner = lrn_rpart to $score() as these measures have the
requires_learner property:

msr("time_train")$properties
[1] "requires_learner" "requires_no_prediction"

3) These can be used after model training and predicting because we automatically
store model run times whenever $train() and $predict() are called, so the
measures above are equivalent to:

c(lrn_rpart$timings, both = sum(lrn_rpart$timings))
train predict both
0.003 0.002 0.005
The selected_features measure calculates how many features were used in the fitted

model.

msr_sf = msr("selected_features")
msr_sf
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<MeasureSelectedFeatures:selected_features>: Absolute or Relative Frequency of Selected Features
Packages: mlr3

Range: [0, Inf]

Minimize: TRUE

Average: macro

Parameters: normalize=FALSE

Properties: requires_task, requires_learner, requires_model,

requires_no_prediction

* Predict type: NA

* ¥ ¥ X X %

We can see that this measure contains control parameters (Parameters: Control
normalize=FALSE), which control how the measure is computed. As with hyperpa- Parameters
rameters these can be accessed with $param_set:

msr_sf = msr("selected_features")
msr_sf$param_set

<ParamSet (1)>
id class lower upper nlevels default value
1: normalize ParamLgl NA NA 2 <NoDefault[0]> FALSE

The normalize hyperparameter specifies whether the returned number of selected features
should be normalized by the total number of features, this is useful if you are comparing
this value across tasks with differing numbers of features. We would change this parameter
in the exact same way as we did with the learner above:

msr_sf$param_set$values$normalize = TRUE
prediction$score(msr_sf, task = tsk_mtcars, learner = lrn_rpart)

selected_features
0.1

Note that we passed the task and learner as the measure has the requires_task and
requires_learner properties.

2.4 Our First Regression Experiment

We have now seen how to train a model, make predictions and score them. What we have
not yet attempted is to ascertain if our predictions are any ‘good’. So before look at how the
building blocks of m1r3 extend to classification, we will take a brief pause to put together
everything above in a short experiment to assess the quality of our predictions. We will do
this by comparing the performance of a featureless regression learner to a decision tree with
changed hyperparameters.

library (mlr3)

set.seed(349)

# load and partition our task
tsk_mtcars = tsk("mtcars")
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splits = partition(tsk_mtcars)

# load featureless learner

lrn_featureless = lrn("regr.featureless")

# load decision tree and set hyperparameters
lrn_rpart = lrn("regr.rpart", cp = 0.2, maxdepth = 5)
# load MSE and MAE measures

measures = msrs(c("regr.mse", "regr.mae"))

# train learners

lrn_featureless$train(tsk_mtcars, splits$train)
lrn_rpart$train(tsk_mtcars, splits$train)

# make and score predictions

lrn_featureless$predict (tsk_mtcars, splits$test)$score(measures)

regr.mse regr.mae
63.288 6.409

lrn_rpart$predict (tsk_mtcars, splits$test)$score(measures)

regr.mse regr.mae
21.806 3.664

Before starting the experiment we load the m1r3 library and set a seed. We loaded the mtcars
task using tsk() and then split this using partition with the default 2/3 split. Next, we
loaded a featureless baseline learner ("regr.featureless") with the 1rn() function. Then
loaded a decision tree (lrn("regr.rpart")) but changed the complexity parameter and
max tree depth from their defaults. We then used msrs () to load multiple measures at once,
the mean squared error (MSE: regr.mse) and the mean absolute error (MAE: regr.mae).
With all objects loaded, we trained our models, ensuring we passed the same training data
to both. Finally, we made predictions from our trained models and scored these. For both
MSE and MAE, lower values are ‘better’ (Minimize: TRUE) and we can therefore conclude
that our decision tree performs better than the featureless baseline. In Section 3.3 we will
see how to formalize comparison between models in a more efficient way using benchmark ().

Now we have put everything together you may notice that our learners and measures both
have the "regr." prefix, which is a handy way of reminding us that we are working with a
regression task and therefore must make use of learners and measures built for regression.
In the next section, we will extend the building blocks of m1r3 to consider classification
tasks, which make use of learners and measures with the "classif." prefix.

2.5 Classification

Classification problems are ones in which a model predicts a discrete, categorical target, as
opposed to a continuous, numeric quantity. For example, predicting the species of penguin
from its physical characteristics would be a classification problem as there is a defined set
of species. m1r3 ensures that the interface for all tasks is as similar as possible (if not
identical) and therefore we will not repeat any content from the previous section but will
just focus on differences that make classification a unique machine learning problem. We
will first demonstrate the similarities between regression and classification by performing
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an experiment very similar to the one in Section 2.4, using code that will now be familiar
to you. We will then move to differences in tasks, learners and predictions, before looking
at thresholding, which is a method specific to classification.

2.5.1 Our First Classification Experiment

The interface for classification tasks, learners, and measures, is identical to the regression
setting, except the underlying objects inherit from TaskClassif, LearnerClassif, and
MeasureClassif, respectively. We can therefore run a very similar experiment to the one
above.

library(mlr3)

set.seed(349)

# load and partition our task

tsk_penguins = tsk("penguins")

splits = partition(tsk_penguins)

# load featureless learner

lrn_featureless = lrn("classif.featureless")

# load decision tree and set hyperparameters

lrn_rpart = lrn("classif.rpart", cp = 0.2, maxdepth = 5)
# load accuracy measure

measure = msr("classif.acc")

# train learners

lrn_featureless$train(tsk_penguins, splits$train)
lrn_rpart$train(tsk_penguins, splits$train)

# make and score predictions

lrn_featureless$predict (tsk_penguins, splits$test)$score(measure)

classif.acc
0.4561

lrn_rpart$predict (tsk_penguins, splits$test)$score(measure)

classif.acc
0.9474

In this experiment, we loaded the predefined task penguins, which is based on the penguins
dataset, then partitioned the data into training and test splits. We loaded the featureless
classification baseline (using the default which always predicts the most common class in the
training data, but which also has the option of predicting (uniformly or weighted) random
response values) and a classification decision tree, then the accuracy measure (number of
correct predictions divided by total number of predictions), trained our models and finally
made and scored predictions. Once again we can be happy with our predictions, which are
vastly more accurate than the baseline.

Now that we have seen the similarities between classification and regression, we can turn
to some key differences.
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2.5.2 TaskClassif

TaskClassif Classification tasks, objects inheriting from TaskClassif, are very similar to regression
tasks, except that the target variable is of type factor and will have a limited number of
possible classes/categories that observations can fall into.

You can view the predefined classification tasks in m1r3 by filtering the mlr_tasks dictio-
nary:

1
1
1
1

as.data.table(mlr_tasks) [task_type == "classif"]

key
1: breast_cancer
2: german_credit

3: ilpd
4: iris
5: optdigits
9: sonar
0: spam
1: titanic
2: wine
3: Z00

label task_type

Wisconsin Breast Cancer classif

German Credit classif

Indian Liver Patient Data classif

Iris Flowers classif

Optical Recognition of Handwritten Digits classif

Sonar: Mines vs. Rocks classif
HP Spam Detection  classif
Titanic classif

Wine Regions classif

Zoo Animals classif

10 variable(s) not shown: [nrow, ncol, properties, 1lgl, int, dbl, chr, fct, ord, pxc]

You can create your own task with as_task_classif.

as_task_classi*

as_task_classif(palmerpenguins: :penguins, target = "species")

<TaskClassif:palmerpenguins: :penguins> (344 x 8)

*

Target: species

* Properties: multiclass

*

Features (7):

- int (3): body_mass_g, flipper_length_mm, year

- dbl (2): bill_

depth_mm, bill_length_mm

- fct (2): island, sex

There are two types of classification tasks supported in mlr3: binary classification, in which
the outcome can be one of two categories, and multiclass classification, where the outcome
can be one of three or more categories.

The sonar task is an example of a binary classification problem, as the target can only take
two different values, in m1r3 terminology it has the “twoclass” property:

tsk_sonar = tsk("sonar")

tsk_sonar

<TaskClassif:sonar> (208 x 61): Sonar: Mines vs. Rocks

*
*
*

Target: Class

Properties: twoclass

Features (60):
- dbl (60): Vi1,

vio, vi1, vi2, Vi3, Vvi4, Vvi5, Vi6, V17, V18,

vi9, v2, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29,
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v3, v30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V4,
V4o, v41, v42, V43, V44, V45, V46, V47, V48, V49, V5, V50,
V51, Vb2, V&3, Vb4, Vb5, V66, V57, V58, V59, V6, V60, V7,
V8, V9

tsk_sonar$class_names

[1] IIMII IIRII

In contrast, tsk("penguins") is a multiclass problem as there are more than two species
of penguins; it has the “multiclass” property:

tsk_penguins = tsk("penguins")
tsk_penguins$properties

[1] "multiclass"
tsk_penguins$class_names

[1] "Adelie" "Chinstrap" "Gentoo"

A further difference between these tasks is that binary classification tasks have an extra
field called $positive, which defines the ‘positive’ class. In binary classification, as there $positive
are only two possible class types, by convention one of these is known as the ‘positive’ class,
and the other as the ‘negative’ class. It is arbitrary which is which, though often the more
‘important’ (and often smaller) class is set as the positive class. You can set the positive
class during or after construction. If no positive class is specified then mlr3 assumes the
first level in the target column is the positive class, which can lead to misleading results.

# Load the "Sonar" dataset from the "mlbench" package as an example
data(Sonar, package = "mlbench")

# specifying the positive class:

tsk_classif = as_task_classif(Sonar, target = "Class", positive = "R")
tsk_classif$positive

[1] HR"

# changing after construction
tsk_classif$positive = "M"
tsk_classif$positive

[1] HMu

While the choice of positive and negative class is arbitrary, they are essential to ensuring
results from models and performance measures are interpreted as expected — this is best
demonstrated when we discuss thresholding (Section 2.5.4) and ROC metrics (Section 3.4).

Finally, plotting is possible with autoplot.TaskClassif, below we plot a comparison be-
tween the target column and features.
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library(ggplot2)
autoplot (tsk("penguins"), type = "duo") +
theme (strip.text.y = element_text(angle = -45, size = 8))
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Figure 2.4: Overview of part of the penguins dataset.

2.5.3 LearnerClassif and MeasureClassif

Classification learners, which inherit from LearnerClassif, have nearly the same interface

LearnerClassifas regression learners. However, a key difference is that the possible predictions in classi-
fication are either "response" — predicting an observation’s class (a penguin’s species in
our example, this is sometimes called “hard labeling”) — or "prob" — predicting a vector
of probabilities, also called “posterior probabilities”, of an observation belonging to each
class. In classification, the latter can be more useful as it provides information about the
confidence of the predictions:
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<PredictionClassif> for 114 observations:

lrn_rpart = lrn("classif.rpart", predict_type = "prob")

lrn_rpart$train(tsk_penguins, splits$train)

prediction = lrn_rpart$predict (tsk_penguins, splits$test)

prediction

row_ids truth response prob.Adelie
1 Adelie Adelie 0.97030

2 Adelie Adelie 0.97030

3 Adelie Adelie 0.97030

338 Chinstrap Chinstrap 0.04255

339 Chinstrap Chinstrap 0.04255

342 Chinstrap Chinstrap 0.04255

prob.Chinstrap prob.Gentoo

0.
0.
0.

0.
0.
0.

0297
0297
0297
9362
9362
9362

0
0
0

0
0
0

.00000
.00000
.00000

.02128
.02128
.02128
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Notice how the predictions include the predicted probabilities for all three classes, as well

as the response, which (by default) is the class with the highest predicted probability.

Also, the interface for classification measures, which are of class MeasureClassif, is identi-

cal to regression measures. The key difference in usage is that you will need to ensure your

selected measure evaluates the prediction type of interest. To evaluate "response" predic-
tions, you will need measures with predict_type

predictions you will need predict_type
is by filtering the mlr_measures dictionary:

1
2
3
4
5:
6
7
5

as.data.table(msr()) [

task_type == "classif" & predict_type == "prob" &

= "response", or to evaluate probability
"prob". The easiest way to find these measures

I'sapply(task_properties, function(x) "twoclass" %inj% x)]

key
classif.logloss
: classif.mauc_aulp
: classif.mauc_aulu

classif.mauc_aunu

classif.mauc_mu

classif .mbrier
variable(s) not shown:

Weighted average 1 vs. 1

Average 1 vs. 1
: classif.mauc_aunp Weighted average 1 vs. rest
Average 1 vs. rest

label

Log Loss
multiclass AUC
multiclass AUC
multiclass AUC
multiclass AUC

Multiclass mu AUC
Multiclass Brier Score
[task_type, packages, predict_type, properties, task_properties]

We also filtered to remove any measures that have the "twoclass" property as this would
conflict with our "multiclass" task. We need to use sapply for this, the task_properties
column is a list column. We can evaluate the quality of our probability predictions and

response predictions simultaneously by providing multiple measures:

measures = msrs(c("classif.mbrier", "classif.logloss", "classif.acc"))

prediction$score(measures)

classif.mbrier classif.
0.1029

logloss
0.7548

classif.acc

0.9386

The accuracy measure evaluates the "response" predictions whereas the Brier score
("classif.mbrier", squared difference between predicted probabilities and the truth) and

MeasureClassif
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logloss ("classif.logloss", negative logarithm of the predicted probability for the true
class) are evaluating the probability predictions.

If no measure is passed to $score(), the default is the classification error
(msr("classif.ce")), which is the number of misclassifications divided by the number
of predictions, i.e., 1— msr("classif.acc").

2.5.4 PredictionClassif, Confusion Matrix, and Thresholding

PredictionClassif objects have two important differences from their regression analog.

PredictionClasdirstly, the added field $confusion, and secondly the added method $set_threshold().

Confusion
Matrix

$confusion

Confusion matrix

A confusion matrix is a popular way to show the quality of classification (response) predic-
tions in a more detailed fashion by seeing if a model is good at (mis)classifying observations
in a particular class. For binary and multiclass classification, the confusion matrix is stored
in the $confusion field of the PredictionClassif object:

prediction$confusion

truth
response Adelie Chinstrap Gentoo
Adelie 48 2 0
Chinstrap 4 14 1
Gentoo 0 0 45

The rows in a confusion matrix are the predicted class and the columns are the true class.
All off-diagonal entries are incorrectly classified observations, and all diagonal entries are
correctly classified. In this case, the classifier does fairly well classifying all penguins, but we
could have found that it only classifies the Adelie species well but often conflates Chinstrap
and Gentoo, for example.

You can visualize the predicted class labels with autoplot.PredictionClassif ().

autoplot (prediction)

value

B Acetie
. Chinstrap

Gentoo

truth response
Feature

Figure 2.5: Counts of each class label in the ground truth data (left) and predictions (right).
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In the binary classification case, the top left entry corresponds to true positives, the top
right to false positives, the bottom left to false negatives and the bottom right to true
negatives. Taking tsk_sonar as an example with M as the positive class:

splits = partition(tsk_sonar)
lrn_rpart$
train(tsk_sonar, splits$train)$
predict (tsk_sonar, splits$test)$
confusion

truth
response M R
M 16 13
R 13 27

We will return to the concept of binary (mis)classification in greater detail in Section 3.4.

Thresholding

The final big difference compared to regression we will discuss is thresholding. We saw  Threshold-
previously that the default response prediction type is the class with the highest predicted ing
probability. For k classes with predicted probabilities py, ..., p;, this is the same as saying

response = argmax{py,...,ps - If the maximum probability is not unique, i.e., multiple

classes are predicted to have the highest probability, then the response is chosen randomly

from these. In binary classification, this means that the positive class will be selected if the

predicted class is greater than 50%, and the negative class otherwise.

This 50% value is known as the threshold and it can be useful to change this threshold
if there is class imbalance (when one class is over- or under-represented in a dataset), or
if there are different costs associated with classes, or simply if there is a preference to
‘over’-predict one class. As an example, let us take tsk("german_credit") in which 700
customers have good credit and 300 have bad. Now we could easily build a model with
around “70%” accuracy simply by always predicting a customer will have good credit:

task_credit = tsk("german_credit")

lrn_featureless = lrn("classif.featureless", predict_type = "prob")
split = partition(task_credit)

lrn_featureless$train(task_credit, split$train)

prediction = lrn_featureless$predict(task_credit, split$test)
prediction$score(msr("classif.acc"))

classif.acc
0.6576

autoplot (prediction)

While this model may appear to have good performance on the surface, in fact, it just
ignores all ‘bad’ customers — this can create big problems in this finance example, as well as
in healthcare tasks and other settings where false positives cost more than false negatives
(see Section 13.1 for cost-sensitive classification).

Thresholding allows classes to be selected with a different probability threshold, so instead
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Figure 2.6: Class labels ground truth (left) and predictions (right). The learner completely
ignores the ‘bad’ class.

of predicting that a customer has bad credit if P(good) < 50%, we might predict bad credit
if P(good) < 70% — notice how we write this in terms of the positive class, which in this
task is ‘good’. Let us see this in practice:

prediction$set_threshold(0.7)
prediction$score(msr("classif.acc"))

classif.acc
0.6576

lrn_rpart = lrn("classif.rpart", predict_type = "prob")
lrn_rpart$train(task_credit, split$train)

prediction = lrn_rpart$predict(task_credit, split$test)
prediction$score(msr("classif.acc"))

classif.acc
0.6727

prediction$confusion
truth
response good bad
good 196 87
bad 21 26

prediction$set_threshold(0.7)
prediction$score(msr("classif.acc"))

classif.acc
0.6727

prediction$confusion
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truth
response good bad
good 196 87
bad 21 26

While our model performs ‘worse’ overall, i.e. with lower accuracy, it is still a ‘better’ model
as it more accurately captures the relationship between classes.

In the binary classification setting, $set_threshold() only requires one numeric argument,
which corresponds with the threshold for the positive class — hence it is essential to ensure
the positive class is correctly set in your task.

In multiclass classification, thresholding works by first assigning a threshold to each of
the n classes, dividing the predicted probabilities for each class by these thresholds to
return n ratios, and then the class with the highest ratio is selected. For example, say we
are predicting if a new observation will be of class A, B, C, or D and we have predicted
P(A=0.2),P(B=04),P(C =0.1), P(D = 0.3). We will assume that the threshold for all
classes is identical and 1:

probs = c(0.2, 0.4, 0.1
thresholds = c(A =1, B=1, C=1, D = 1)
probs/thresholds

AL B C D
0.2 0.40.10.3

We would therefore predict our observation is of class B as this is the highest ratio. However,
we could change our thresholds so that D has the lowest threshold and is most likely to be
predicted, A has the highest threshold, and B and C have equal thresholds:

thresholds = c(A = 0.5, B = 0.25, C = 0.25, D = 0.1)
probs/thresholds

A B C D
0.41.6 0.4 3.0

Now our observation will be predicted to be in class D.

Inmlr3, this is achieved by passing a named list to $set_threshold (). This is demonstrated
below with tsk("zoo"). Before changing the thresholds, some classes are never predicted
and some are predicted more often than they occur.

library(ggplot2)
library(patchwork)

tsk_zoo = tsk("zoo")

splits = partition(tsk_zoo)

lrn_rpart = lrn("classif.rpart", predict_type = "prob")
lrn_rpart$train(tsk_zoo, splits$train)

prediction = lrn_rpart$predict(tsk_zoo, splits$test)

before = autoplot(prediction) + ggtitle("Default thresholds")
new_thresh = proportions(table(tsk_zoo$truth(splits$train)))
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new_thresh

mammal bird
0.38235 0.20588
insect mollusc.et.al
0.10294 0.05882
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reptile fish amphibian
0.07353 0.11765 0.05882

prediction$set_threshold(new_thresh)

after

before + after + plot_layout(guides = "collect")

30

Count

10

Default thresholds

truth response
Feature

30

Count

10

autoplot (prediction) + ggtitle("Inverse weighting thresholds")

Inverse weighting thresholds

6 4

truth response
Feature

Feature
B vir
. fish
insect

mammal

(1]

mollusc.et.al

Figure 2.7: Comparing predicted and ground truth values for the zoo dataset.

Again we see that the model better represents all classes after thresholding. In this example
we set the new thresholds to be the proportions of each class in the training set. This is
known as inverse weighting, as we divide the predicted probability by these class proportions
before we select the label with the highest ratio.

In Section 13.1 we will look at cost-sensitive classification where each cell in the confusion
matrix has a different associated cost.

2.6 Task Column Roles

i This section covers advanced ML or technical details.

Now that we have covered regression and classification, we will briefly return to tasks and
in particular to column roles, which are used to customize tasks further. Column roles are
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used by Task objects to define important metadata that can be used by learners and other
objects to interact with the task. True to their name, they assign particular roles to columns
in the data, we have already seen some of these in action with targets and features. There
are seven column roles:

1. "feature": Features used for prediction.

"target": Target variable to predict.

3. "name": Row names/observation labels, e.g., for mtcars this is the "model" col-
umn.

4. "order": Variable(s) used to order data returned by $data(); must be sortable
with order().

5. "group": Variable used to keep observations together during resampling.

6. "stratum": Variable(s) to stratify during resampling.

7. "weight": Observation weights. Only one numeric column may have this role.

N

We have already seen how features and targets work in Section 2.1, which are the only
column roles that each task must have. In Section 3.2.5 we will have a look at the stratum
and group column roles. So, for now, we will only look at order, and weight. We will not
go into detail about name, which is primarily used in plotting and will almost always be the
rownames () of the underlying data.

Column roles are updated using $set_col_roles(). When we set the "order" column
role, the data is ordered according to that column(s). In the following example, we set the
"order" column role and then order data by this column by including ordered = TRUE:

df = data.frame(mtcars[1:2, ], idx = 2:1)
tsk_mtcars_order = as_task_regr(df, target = "mpg")
# original order

tsk_mtcars_order$data(ordered = TRUE)

mpg am carb cyl disp drat gear hp idx gsec vs wt
1: 21 1 4 6 160 3.9 4 110 2 16.46 0 2.620
2: 21 1 4 6 160 3.9 4 110 1 17.02 0 2.875

# order by "idx" column
tsk_mtcars_order$set_col_roles("idx", roles = "order")
tsk_mtcars_order$data(ordered = TRUE)

mpg am carb cyl disp drat gear hp qgsec vs wt
1. 21 1 4 6 160 3.9 4 110 17.02 0 2.875
2: 21 1 4 6 160 3.9 4 110 16.46 0 2.620

In this example we can see that by setting "idx" to have the "order" column role, it is no
longer used as a feature when we run $data() but instead is used to order the observations
according to its value. This metadata is not passed to a learner.

The weights column role is used to weight data points differently. One example of why
we would do this is in classification tasks with severe class imbalance, where weighting the
minority class more heavily may improve the model’s predictive performance for that class.
For example in the breast_cancer dataset, there are more instances of benign tumors than
malignant tumors, so if we want to better predict malignant tumors we could weight the
data in favor of this class:
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cancer_unweighted = tsk("breast_cancer")
summary (cancer_unweighted$data() $class)

malignant benign
239 444

# add column where weight is 2 if class "malignant", and 1 otherwise
df = cancer_unweighted$data()
df$weights = ifelse(df$class == "malignant", 2, 1)

# create new task and role
cancer_weighted = as_task_classif(df, target = "class")
cancer_weighted$set_col_roles("weights", roles = "weight")

# compare weighted and unweighted predictions

split = partition(cancer_unweighted)

lrn_rf = lrn("classif.ranger")

lrn_rf$train(cancer_unweighted, split$train)$
predict(cancer_unweighted, split$test)$score()

classif.ce
0.05333

lrn_rf$train(cancer_weighted, split$train)$
predict(cancer_weighted, split$test)$score()

classif.ce
0.04

In this example, weighting improves the overall model performance (but see Chapter 3 for
more thorough comparison methods). Not all models can handle weights in tasks so check
a learner’s properties to make sure this column role is being used as expected.

2.7 Supported Learning Algorithms

mlr3 supports many learning algorithms (some with multiple implementations) as Learners.
These are primarily provided by the m1r3, mlr3learners and mlr3extralearners packages.
However, all packages that implement new tasks (Chapter 13) also include a handful of
simple algorithms.

The list of learners included in m1r3 is deliberately small to avoid large sets of dependencies:

o Featureless learners ("regr.featureless"/"classif.featureless"), which are baseline
learners (Section 2.2.4).

o Debug learners ("regr.debug"/"classif.debug"), which are used to debug code (Sec-
tion 10.2).

o Classification and regression trees (also known as CART:
"regr.rpart"/"classif.rpart").
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The mlr3learners package contains a selection of algorithms (and select implementations)
chosen by the mlr team that we recommend as a good starting point for most experiments:

e Linear ("regr.1lm") and logistic ("classif.log_reg") regression.

e Penalized generalized linear models, where the penalization is either exposed as a hyper-
parameter ("regr.glmnet"/"classif.glmnet") or where it is optimized automatically
("regr.cv_glmnet"/"classif.cv_glmnet").

o Weighted k-Nearest Neighbors ("regr.kknn"/"classif.kknn").

o Kriging / Gaussian process regression ("regr.km").

o Linear ("classif.1lda") and quadratic ("classif.qda") discriminant analysis.

o Naive Bayes classification ("classif.naive_bayes").

e Support-vector machines ("regr.svm"/"classif.svm").

o Gradient boosting ("regr.

xgboost"/"classif.xgboost").

o Random forests for regression and classification ("regr.ranger"/"classif.ranger").

The majority of other supported learners are in mlr3extralearners. You can find an up-
to-date list of learners at https://mlr-org.com/learners.html.

The dictionary mlr_learners contains learners that are supported in loaded packages:

learners_dt = as.data.table(mlr_learners)

learners_dt

key
1: classif.AdaBoostM1
2: classif.Cb0
3: classif.IBk
4: classif.J48
5: classif.JRip

173: surv.ranger
174: surv.rfsrc
175: Surv.svm
176: surv.xgboost.aft
177: surv.xgboost.cox

4 variable(s) not shown:

label task_type
Adaptive Boosting  classif
Tree-based Model classif
Nearest Neighbour  classif
Tree-based Model classif

Propositional Rule Learner. classif
Random Forest surv

Random Forest surv

Survival Support Vector Machine surv
Extreme Gradient Boosting AFT surv
Extreme Gradient Boosting Cox surv

[feature_types, packages, properties, predict_types]

The resulting data.table contains a lot of metadata that is useful for identifying learners
with particular properties. For example, we can list all learners that support classification

problems:
learners_dt[task_type == "classif"]

key label
1: classif.AdaBoostM1 Adaptive Boosting
2: classif.C50 Tree-based Model
3: classif.IBk Nearest Neighbour
4: classif.J48 Tree-based Model
5: classif.JRip Propositional Rule Learner.

57: classif.simple_logistic LogitBoost Based Logistic Regression
58: classif.smo Support Vector Machine
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59: classif.svm Support Vector Machine
60: classif.voted_perceptron Voted Perceptron
61: classif.xgboost Extreme Gradient Boosting

5 variable(s) not shown: [task_type, feature_types, packages, properties, predict_types]

We can filter by multiple conditions, for example to list all regression learners that can
predict standard errors:

learners_dt[task_type == "regr" &
sapply(predict_types, function(x) "se" %in% x)]

key

regr.debug

regr.earth

regr.featureless

regr.gam

regr.glm

regr.km

regr.lm

regr.mob

regr.qgam

10: regr.ranger
6 variable(s) not shown: [label, task_type, feature_types, packages, properties, predict_types]

© 00 ~NO O WN -

2.8 Conclusion

In this chapter, we covered the building blocks of mlr3. We first introduced basic ML
methodology and then showed how this is implemented in m1r3. We began by looking at
the Task class, which is used to define machine learning tasks or problems to solve. We then
looked at the Learner class, which encapsulates machine learning algorithms, hyperparam-
eters, and other meta-information. Finally, we considered how to evaluate machine learning
models with objects from the Measure class. After looking at regression implementations,
we extended all the above to the classification setting, before finally looking at some extra
details about tasks and the learning algorithms that are implemented across mlr3. The
rest of this book will build on the basic elements seen in this chapter, starting with more
advanced model comparison methods in Chapter 3 before moving on to improve model
performance with automated hyperparameter tuning in Chapter 4.

Table 2.2: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor /Function Fields/Methods

Task tsk() /tsks() /as_task_X $filter(); $select(); $data()

Learner 1rn() /1rns ) $train(); $predict);
$predict_newdata(); $model ()

Prediction some_learner$predict () $score(); $set_threshold();

$confusion
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https://mlr3.mlr-org.com/reference/Task.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3.mlr-org.com/reference/Prediction.html

2.9 Exercises

1.

Train a classification model with the classif.rpart learner on the “Pima
Indians Diabetes” dataset. Do this without using tsk("pima"), and in-
stead by constructing a task from the dataset in the mlbench-package:
data(PimaIndiansDiabetes2, package = "mlbench"). Make sure to define the
pos outcome as positive class. Train the model on a random 80% subset of the
given data and evaluate its performance with the classification error measure on
the remaining data. (Note that the data set has NAs in its features. You can
either rely on rpart‘s capability to handle them internally (’surrogate splits’) or
remove them from the initial data.frame by using na.omit.

Calculate the true positive, false positive, true negative, and false negative rates
of the predictions made by the model in Exercise 1. Try to solve this in two ways:
(a) Using mlr3measures-predefined measure objects, and (b) without using m1r3
tools by directly working on the ground truth and prediction vectors. Compare
the results.

Change the threshold of the model from Exercise 1 such that the false positive
rate is lower than the false negative rate. What is one reason you might do this
in practice?

Ezxercises 49
Class Constructor/Function Fields/Methods

Measure msr () /msrs () -

——
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A supervised machine learning model can only be deployed in practice if it has a good
generalization performance, which means it generalizes well to new, unseen data. Accurate
estimation of the generalization performance is crucial for many aspects of machine learning
application and research — whether we want to fairly compare a novel algorithm with estab-
lished ones or to find the best algorithm for a particular task. The concept of performance
estimation provides information on how well a model will generalize to new data and plays
an important role in the context of model comparison (Section 3.3), model selection, and
hyperparameter tuning (Chapter 4).

Assessing the generalization performance of a model begins with selecting a performance
measure that is appropriate for our given task and evaluation goal. As we have seen in
Section 2.3, performance measures typically compute a numeric score indicating how well
the model predictions match the ground truth (though some technical measures were seen
in Section 2.3.3). Once we have decided on a performance measure, the next step is to
adopt a strategy that defines how to use the available data to estimate the generalization
performance. Using the same data to train and test a model is a bad strategy as it would lead
to an overly optimistic performance estimate. For example, a model that is overfitted (fit too
closely to the data) could make perfect predictions on training data simply by memorizing
it and then only make random guesses for new data. In Section 2.2.1.1 we introduced
partition(), which splits a dataset into training data — data for training the model — and
test data — data for testing the model and estimating the generalization performance, this
is known as the holdout strategy (Section 3.1) and is where we will begin this chapter. We
will then consider more advanced strategies for assessing the generalization performance
(Section 3.2), look at robust methods for comparing models (Section 3.3), and finally will
discuss specialized performance measures for binary classification (Section 3.4). For an in-
depth overview of measures and performance estimation, we recommend Japkowicz and
Shah (2011).

Resampling Does Not Avoid Model Overfitting
A common misunderstanding is that holdout and other more advanced resampling
strategies can prevent model overfitting. In fact, these methods just make overfitting

visible as we can separately evaluate train/test performance. Resampling strategies
also allow us to make (nearly) unbiased estimations of the generalization error.

o1

Generaliza-
tion

Performance
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3.1 Holdout and Scoring

An important goal of ML is to learn a model that can then be used to make predictions
about new data. For this model to be as accurate as possible, we would ideally train it on as
much data as is available. However, data is limited and as we have discussed we cannot train
and test a model on the same data. In practice, one would usually create an intermediate
model, which is trained on a subset of the available data and then tested on the remainder
of the data. The performance of this intermediate model, obtained by comparing the model
predictions to the ground truth, is an estimate of the generalization performance of the final
model, which is the model fitted on all data.

The holdout strategy is a simple method to create this split between training and testing
datasets, whereby the original data is split into two datasets using a defined ratio. Ideally, the
training dataset should be as large as possible so the intermediate model represents the final
model as well possible. If the training data is too small, the intermediate model is unlikely to
perform as well as the final model, resulting in a pessimistically biased performance estimate.
On the other hand, if the training data is too large, then we will not have a reliable estimate
of the generalization performance due to high variance resulting from small test data. As a
rule of thumb, it is common to use 2/3 of the data for training and 1/3 for testing as this
provides a reasonable trade-off between bias and variance of the generalization performance
estimate (Kohavi 1995; Dobbin and Simon 2011).

In Chapter 2, we used partition() to apply the holdout method to a Task object. To
recap, let us split tsk("penguins") with a 2/3 holdout (default split):

tsk_penguins = tsk("penguins")

splits = partition(tsk_penguins)

lrn_rpart = lrn("classif.rpart")
lrn_rpart$train(tsk_penguins, splits$train)

prediction = lrn_rpart$predict (tsk_penguins, splits$test)

We can now estimate the generalization performance of a final model by evaluating the
quality of the predictions from our intermediate model. As we have seen in Section 2.3,
this is simply a case of choosing one or more measures and passing them to the $score()
function. So to estimate the accuracy of our final model we would pass the accuracy measure
to our intermediate model:

prediction$score(msr("classif.acc"))

classif.acc
0.9386

@ Permuting Observations for Performance Estimation

When splitting data it is essential to permute observations before, to remove any
information that is encoded in data ordering. The order of data is often informative
in real-world datasets, for example hospital data will likely be ordered by time of
patient admission. In tsk("penguins"), the data is ordered such that the first 152
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rows all have the label ‘Adelie’, the next 68 have the label ‘Chinstrap’, and the final
124 have the label ‘Gentoo’; so if we did not permute the data we could end up with
a model that is only trained on one or two species.

partition() and all resampling strategies discussed below automatically randomly
split the data to prevent any biases (so do not forget to set a seed for reproducibility).
Data within each set may still be ordered because of implementation details, but this
is not a problem as long as the data is shuffled between sets.

Many performance measures are based on ‘decomposable’ losses, which means they compute
the differences between the predicted values and ground truth values first on an observation
level and then aggregate the individual loss values over the test set into a single numeric
score. For example, the classification accuracy compares whether the predicted values from
the response column have the same value as the ground truth values from the truth column
of the Prediction object. Hence, for each observation, the decomposable loss takes either
value 1 (if response and truth have the same value) or 0 otherwise. The $score () method
summarizes these individual loss values into a an average value — the percentage where our
prediction was correct. Other performance measures that are not decomposable instead act
on a set of observations, we will return to this in detail when we look at the AUC measure
in Section 3.4. Figure 3.1 illustrates the input-output behavior of the $score () method, we
will return to this when we turn to more complex evaluation strategies.

r—{learner$predict()}
Prediction
row_ids truth response
4 Adelie Adelie
9 Adelie LalzLae classif.acc
22 Adelie Adelie $score() y

0.920354

339 Chinstrap Chinstrap
340 Chinstrap Gentoo
344 Chinstrap Chinstrap

Figure 3.1: Illustration of the $score() method which aggregates predictions of multiple
observations contained in a prediction object into a single numeric score

3.2 Resampling

Resampling strategies repeatedly split all available data into multiple training and test
sets, with one repetition corresponding to what is called a ‘resampling iteration’ in mlr3.
An intermediate model is then trained on each training set and the test set is used to
measure the performance in each resampling iteration. The generalization performance is
finally estimated by aggregating the performance scores over multiple resampling iterations
(Figure 3.2). By repeating the data splitting process, data points are repeatedly used for
both training and testing, allowing more efficient use of all available data for performance
estimation. Furthermore, a high number of resampling iterations can reduce the variance
in our scores and thus result in a more reliable performance estimate. This means that the
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performance estimate is less likely to be affected by an ‘unlucky’ split (e.g., a split that does
not reflect the original data distribution).

Learning Process

______

Data Splitting / Resampling Process

—

—]
Train Intermediate
Set(s) | Model(s)

\_/_\

Test L
Set(s) || [:] Prediction(s)
Performance : Aggregated i
Value(s) : Performance }

Evaluation Process

Figure 3.2: A general abstraction of the performance estimation process. The available data
is (repeatedly) split into training data and test data (data splitting / resampling process).
The learner is trained on each training dataset and produces intermediate models (learning
process). Each intermediate model makes predictions based on the features in the test
data. The performance measure compares these predictions with the ground truth from the
test data and computes a performance value for each test dataset. All performance values
are aggregated into a scalar value to estimate the generalization performance (evaluation
process).

A variety of resampling strategies exist, each with its advantages and disadvantages, which
depend on the number of available samples, the task complexity, and the type of model.

A very common strategy is k-fold cross-validation (CV), which randomly partitions the data
into k non-overlapping subsets, called folds (Figure 3.3). The k models are always trained
on k—1 of the folds, with the remaining fold being used as test data; this process is repeated
until each fold has acted exactly once as test set. Finally, the k performance estimates from
each fold are aggregated, usually by averaging. CV guarantees that each observation will be
used exactly once in a test set, making efficient use of the available data for performance
estimation. Common values for k are 5 and 10, meaning each training set will consist of
4/5 or 9/10 of the original data, respectively. Several variations of CV exist, including
repeated k-fold cross-validation where the k-fold process is repeated multiple times, and
leave-one-out cross-validation (LOO-CV) where the number of folds is equal to the number
of observations, leading to the test set in each fold consisting of only one observation.

Subsampling and bootstrapping are two related resampling strategies. Subsampling ran-
domly selects a given ratio (4/5 and 9/10 are common) of the data for the training dataset
where each observation in the dataset is drawn without replacement from the original dataset.
The model is trained on this data and then tested on the remaining data, and this process
is repeated k times. This differs from k-fold CV as the subsets of test data may be over-
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lapping. Bootstrapping follows the same process as subsampling but data is drawn with
replacement from the original dataset. Usually the number of bootstrap samples equals the
size of the original dataset. This means an observation could be selected multiple times
(and thus duplicated) in the training data (but never more than once per test dataset). On
average, 1 — e ' ~ 63.2% of the data points will be contained in the training set during
bootstrapping, referred to as “in-bag” samples (the other 36.8% are known as “out-of-bag”
samples).

Note that terminology regarding resampling strategies is not consistent across the literature,
for example, subsampling is sometimes referred to as “repeated holdout” or “Monte Carlo
cross-validation”.

The choice of the resampling strategy usually depends on the specific task at hand and the
goals of the performance assessment, but some rules of thumb are available. If the available
data is fairly small (N < 500), repeated cross-validation with a large number of repeti-
tions can be used to keep the variance of the performance estimates low (10 folds and 10
repetitions is a good place to start). Traditionally, LOO-CV has also been recommended
for these small sample size regimes, but this estimation scheme is quite expensive (except
in special cases where computational shortcuts exist) and (counterintuitively) suffers from
quite high variance. Furthermore, LOO-CV is also problematic in imbalanced binary clas-
sification tasks as concepts such as stratification (Section 3.2.5) cannot be applied. For the
500 < N < 50000 range, 5- to 10-fold CV is generally recommended. In general, the larger
the dataset, the fewer splits are required, yet sample-size issues can still occur, e.g., due
to imbalanced data. For settings where one is more interested in proper inference (such as
through statistical performance tests or confidence intervals) than bare point estimators of
performance, bootstrapping and subsampling are often considered, usually with a higher
number of iterations. Bootstrapping has become less common, as having repeated observa-
tions in training data can lead to problems in some machine learning setups, especially when
combined with model selection methods and nested resampling (as duplicated observations
can then end up simultaneously in training and test sets in nested schemes). Also note that
in all of these common and simple schemes, resampling performance estimates are not in-
dependent, as models are fitted on overlapping training data, making proper inference less
than trivial, but a proper treatment of these issues is out of scope for us here. For further
details and critical discussion we refer to the literature, e.g., Molinaro, Simon, and Pfeiffer
(2005), J.-H. Kim (2009), and Bischl et al. (2012).

Available Data
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Figure 3.3: Illustration of a three-fold cross-validation.
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In the rest of this section, we will go through querying and constructing resampling strategies
in m1r3, instantiating train-test splits, and then performing resampling on learners.
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3.2.1 Constructing a Resampling Strategy

All implemented resampling strategies are stored in the mlr_resamplings dictionary.

as.data.table(mlr_resamplings)

key label

1 bootstrap Bootstrap

2 custom Custom Splits

3 custom_cv Custom Split Cross-Validation

4: cv Cross-Validation

5: holdout Holdout

6 insample Insample Resampling

7 loo Leave-One-Out

8 nested_cv Nested CV

9: paired_subsampling Paired Subsampling

10: repeated_cv Repeated Cross-Validation
11: subsampling Subsampling

2 variable(s) not shown: [params, iters]

The params column shows the parameters of each resampling strategy (e.g., the train-test
splitting ratio or the number of repeats) and iters displays the number of performed
resampling iterations by default.

Resampling Resampling objects can be constructed by passing the strategy ‘key’ to the sugar function
rsmp()  rsmp(). For example, to construct the holdout strategy with a 4/5 split (2/3 by default):

rsmp("holdout", ratio = 0.8)

<ResamplingHoldout>: Holdout
* Iterations: 1

* Instantiated: FALSE

* Parameters: ratio=0.8

Parameters for objects inheriting from Resampling work in the same way as measures and
learners and can be set, retrieved, and updated accordingly:

# three-fold CV
cv3 = rsmp("cv", folds = 3)
# Subsampling with 3 repeats and 9/10 ratio

$s390 = rsmp("subsampling", repeats = 3, ratio = 0.9)
# 2-repeats 5-fold CV
rcv25 = rsmp("repeated_cv", repeats = 2, folds = 5)

When a "Resampling" object is constructed, it is simply a definition for how the data
splitting process will be performed on the task when running the resampling strategy. How-
ever, it is possible to manually instantiate a resampling strategy, i.e., generate all train-
test splits, by calling the $instantiate() method on a given task. So carrying on our

$instantiate () tsk("penguins") example we can instantiate the three-fold CV object and then view the
row indices of the data selected for training and testing each fold using $train_set () and
$test_set () respectively:
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cv3$instantiate (tsk_penguins)
# first 5 observations in first training set
cv3$train_set (1) [1:5]

[1] 1 4 5 816

# first 5 observations in third test set
cv3$test _set(3) [1:5]

[1] 2 6 10 13 19

When the aim is to fairly compare multiple learners, best practice dictates that all learners
being compared use the same training data to build a model and that they use the same test
data to evaluate the model performance. Resampling strategies are instantiated automat-
ically for you when using the resample() method, which we will discuss next. Therefore,
manually instantiating resampling strategies is rarely required but might be useful for de-
bugging or digging deeper into a model’s performance.

3.2.2 Resampling Experiments

The resample() function takes a given Task, Learner, and Resampling object to run
the given resampling strategy. resample () repeatedly fits a model on training sets, makes
predictions on the corresponding test sets and stores them in a ResampleResult object,
which contains all the information needed to estimate the generalization performance.

rr = resample(tsk_penguins, lrn_rpart, cv3)
rr

<ResampleResult> with 3 resampling iterations

task_id learner_id resampling_id iteration prediction_test
penguins classif.rpart cv 1 <PredictionClassif>
penguins classif.rpart cv 2 <PredictionClassif>
penguins classif.rpart cv 3 <PredictionClassif>

2 variable(s) not shown: [warnings, errors]

Each row of the output corresponds to one of the three iterations/folds. As with Prediction
objects, we can calculate the score for each iteration with $score():

acc = rr$score(msr("classif.ce"))
acc[, .(iteration, classif.ce)]

iteration classif.ce

1: 1 0.06087
2: 2 0.05217
3: 3 0.07018

e Evaluating Train Sets

By default, $score() evaluates the performance in the test sets in each iteration,
however, you could evaluate the train set performance, see ?@sec-valid-tuning.

resample()

ResampleResult
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While $score() returns the performance in each evaluation, $aggregate(), returns the
aggregated score across all resampling iterations.

rr$aggregate (msr("classif.ce"))

classif.ce
0.06107

By default, the majority of measures will aggregate scores using a macro average, which
first calculates the measure in each resampling iteration separately, and then averages these
scores across all iterations. However, it is also possible to aggregate scores using a micro
average, which pools predictions across resampling iterations into one Prediction object
and then computes the measure on this directly:

rr$aggregate(msr("classif.ce", average = "micro"))

classif.ce
0.06105

We can see a small difference between the two methods. Classification error is a decompos-
able loss (Section 3.1), in fact, if the test sets all had the same size then the micro and
macro methods would be identical (see box below). For errors like AUC, which are defined
across the set of observations, the difference between micro- and macro-averaging will be
larger. The default type of aggregation method can be found by querying the $average
field of a Measure object.

@ Macro- and Micro-Averaging

As a simple example to explain macro- and micro-averaging, consider the difference
between taking the mean of a vector (micro) compared to the mean of two group-wise
means (macro):

# macro
mean (mean(c(3, 5, 9)), mean(c(1, 5)))

[1] 5.667

# micro
mean(c(3, 5, 9, 1, 5))

[1] 4.6

In the example shown in the main text where we used tsk("penguins"), there is a
difference in the classification error between micro and macro methods because the
dataset has 344 rows, which is not divisible by three (the number of folds), hence the
test sets are not of an equal size.

Note that the terms “macro-averaging” and “micro-averaging” are not used consis-
tently in the literature, and sometimes refer to different concepts, e.g., the way in
which the performance is aggregated across classes in a multi-class classification task.

The aggregated score returned by $aggregate() estimates the generalization performance
of our selected learner on the given task using the resampling strategy defined in the
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Resampling object. While we are usually interested in this aggregated score, it can be
useful to look at the individual performance values of each resampling iteration (as re-
turned by the $score() method) as well, e.g., to see if any of the iterations lead to very
different performance results. Figure 3.4 visualizes the relationship between $score() and
$aggregate () for a small example based on the "penguins" task.

rr$predictions()
List of Predictions
row_ids truth response
1 Adelie Adelie
5 Adelie Adelie
9 Adelie Adelie

337 Chinstrap Chinstrap
342 Chinstrap Chinstrap
344 Chinstrap Chinstrap

row_ids truth response
3 Adelie Adelie . ) )
4 Aéeide Adelie iteration classif.acc A
6 Adelie Adelie $score() 1 0.9304348 $aggregate () classif.acc
- 3 0.9565217 0.938927
329 Chinstrap Chinstrap 2 0.9290246
339 Chinstrap Chinstrap
341 Chinstrap Adelie
row_ids truth response
2 Adelie Adelie
14 Adelie Adelie
15 Adelie Adelie

338 Chinstrap Chinstrap
340 Chinstrap Gentoo
343 Chinstrap Gentoo

Figure 3.4: An example of the difference between $score() and $aggregate (): The former
aggregates predictions to a single score within each resampling iteration, and the latter
aggregates scores across all resampling iterations.

To visualize the resampling results, you can use the autoplot.ResampleResult() function
to plot scores across folds as boxplots or histograms (Figure 3.5). Histograms can be useful to
visually gauge the variance of the performance results across resampling iterations, whereas
boxplots are often used when multiple learners are compared side-by-side (see Section 3.3).

rr = resample(tsk_penguins, lrn_rpart, rsmp("cv", folds = 10))
autoplot(rr, measure = msr("classif.acc"), type = "boxplot")
autoplot(rr, measure = msr("classif.acc"), type = "histogram")

3.2.3 ResampleResult Objects

As well as being useful for estimating the generalization performance, the ResampleResult
object can also be used for model inspection. We can use the $predictions() method to
obtain a list of Prediction objects corresponding to the predictions from each resampling
iteration. This can be used to analyze the predictions of individual intermediate models
from each resampling iteration. To understand the class better, we use it here to manually
compute a macro averaged performance estimate.
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(a) Boxplot of accuracy scores. (b) Histogram of accuracy scores.

Figure 3.5: Boxplot and Histogram of accuracy scores.

# list of prediction objects
rrp = rr$predictions()
# print first two

rrp[1:2]
[[1]1]
<PredictionClassif> for 35 observations:
row_ids truth response

20 Adelie Chinstrap
21 Adelie Adelie
33 Adelie Adelie
307 Chinstrap Adelie
322 Chinstrap Chinstrap
333 Chinstrap Chinstrap

[[2]1]
<PredictionClassif> for 35 observations:
row_ids truth response

8 Adelie Adelie
41 Adelie Adelie
44 Adelie Chinstrap

309 Chinstrap Adelie
312 Chinstrap Chinstrap
331 Chinstrap Adelie

# macro averaged performance
mean (sapply(rrp, function(.x) .x$score()))

[1] 0.05529

The $prediction() method can be used to extract a single Prediction object that com-
bines the predictions of each intermediate model across all resampling iterations. The com-
bined prediction object can, for example, be used to manually compute a micro-averaged
performance estimate (see Section 3.2.2 for how to you can micro-average more conve-
niently).
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prediction = rr$prediction()
prediction

<PredictionClassif> for 344 observations:
row_ids truth response

20 Adelie Chinstrap

21 Adelie Adelie

33 Adelie Adelie

330 Chinstrap Chinstrap

337 Chinstrap Gentoo

340 Chinstrap Gentoo

prediction$score()

classif.ce
0.05523

By default, the intermediate models produced at each resampling iteration are discarded
after the prediction step to reduce memory consumption of the ResampleResult object
(only the predictions are required to calculate most performance measures). However, it can
sometimes be useful to inspect, compare, or extract information from these intermediate
models. We can configure the resample() function to keep the fitted intermediate models
by setting store_models = TRUE. Each model trained in a specific resampling iteration
can then be accessed via $learners[[i]]$model, where i refers to the i-th resampling
iteration:

rr = resample(tsk_penguins, lrn_rpart, cv3, store_models = TRUE)
# get the model from the first iteration
rr$learners[[1]]$model

n= 229

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 229 122 Adelie (0.46725 0.18777 0.34498)
2) bill_length< 42.35 98 0 Adelie (1.00000 0.00000 0.00000) *
3) bill_length>=42.35 131 52 Gentoo (0.06870 0.32824 0.60305)
6) island=Dream,Torgersen 50 7 Chinstrap (0.14000 0.86000 0.00000)
12) island=Torgersen 7 0 Adelie (1.00000 0.00000 0.00000) *
13) island=Dream 43 O Chinstrap (0.00000 1.00000 0.00000) *
7) island=Biscoe 81 2 Gentoo (0.02469 0.00000 0.97531) *

In this example, we could then inspect the most important variables in each iteration to
help us learn more about the respective fitted models:

# print 2nd and 3rd iteration
lapply(rr$learners([2:3], function(x) x$model$variable.importance)

[[11]
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bill_length flipper_length bill_depth body_mass
84.81 80.59 67.52 57.39

island

49.11

[[2]1]

flipper_length bill_length bill_depth island
88.62 82.10 66.59 61.50

body_mass

60.37

3.2.4 Custom Resampling

1 This section covers advanced ML or technical details.

Sometimes it is necessary to perform resampling with custom splits, e.g., to reproduce
results reported in a study with pre-defined folds.

A custom holdout resampling strategy can be constructed using rsmp("custom"), where
the row IDs of the observations used for training and testing must be defined manually
when instantiated with a task. In the example below, we first construct a custom holdout
resampling strategy by manually assigning row IDs to the $train and $test fields, then
construct a resampling strategy with two iterations by passing row IDs as list elements:

rsmp_custom = rsmp("custom")

# resampling strategy with two iteratioms
train_sets = c(1:5, 153:158, 277:280)
rsmp_custom$instantiate (tsk_penguins,
train = list(train_sets, train_sets + 5),
test = list(train_sets + 15, train_sets + 25)
)

resample (tsk_penguins, lrn_rpart, rsmp_custom)$prediction()

<PredictionClassif> for 30 observations:
row_ids truth response
16 Adelie Gentoo
17 Adelie Gentoo
18 Adelie Gentoo
303 Chinstrap Gentoo
304 Chinstrap Gentoo
305 Chinstrap  Gentoo

A custom cross-validation strategy can be more efficiently constructed with
rsmp("custom_cv"). In this case, we now have to specify either a custom factor
variable or a factor column from the data to determine the folds. In the example below,
we use a smaller version of tsk("penguins") and instantiate a custom two-fold CV
strategy using a factor variable called folds where the first and third rows are used as
the test set in Fold 1, and the second and fourth rows are used as the test set in Fold 2:
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tsk_small = tsk("penguins")$filter(c(l, 100, 200, 300))
rsmp_customcv = rsmp("custom_cv")

folds = as.factor(c(1, 2, 1, 2))
rsmp_customcv$instantiate(tsk_small, f = folds)

resample (tsk_small, lrn_rpart, rsmp_customcv)$predictions()

[[1]1]
<PredictionClassif> for 2 observations:
row_ids truth response
1 Adelie Adelie
200 Gentoo Adelie

[[2]1]
<PredictionClassif> for 2 observations:
row_ids truth response

100 Adelie  Adelie
300 Chinstrap  Adelie

3.2.5 Stratification and Grouping

1 This section covers advanced ML or technical details.

Using column roles (Section 2.6), it is possible to group or stratify observations according
to a particular column in the data. We will look at each of these in turn.

Grouped Resampling

Keeping observations together when the data is split can be useful, and sometimes essential,
during resampling — spatial analysis (Section 13.5) is a prominent example, as observations
belong to natural groups (e.g., countries). When observations belong to groups, we need
to ensure all observations of the same group belong to either the training set or the test
set to prevent potential leakage of information between training and testing. For example,
in a longitudinal study, measurements are taken from the same individual at multiple time
points. If we do not group these, we might overestimate the model’s generalization capability
to unseen individuals, because observations of the same individuals might simultaneously
be in the train and test set. In this context, the leave-one-out cross-validation strategy can
be coarsened to the “leave-one-object-out” cross-validation strategy, where all observations
associated with a certain group are left out (Figure 3.6).

The "group" column role allows us to specify the column in the data that defines the group
structure of the observations. In the following code, we construct a leave-one-out resampling
strategy, assign the "group" role to the ‘year’ column of tsk("penguins"), instantiate the
resampling strategy, and finally show how the years are nicely separated in the first fold.

rsmp_loo = rsmp("loo")

tsk_grp = tsk("penguins")

tsk_grp$set_col_roles("year", "group")
rsmp_loo$instantiate(tsk_grp)

table(tsk_grp$data(rows = rsmp_loo$train_set(l), cols = "year"))
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Iteration 1 Iteration 2 Iteration 3

Figure 3.6: Illustration of the train-test splits of a leave-one-object-out cross-validation with
3 groups of observations (highlighted by different colors).

year
2007 2008
110 114

table(tsk_grp$data(rows = rsmp_loo$test_set(l), cols = "year"))

year
2009
120

Other cross-validation techniques work in a similar way, where folds are determined at a
group level (as opposed to an observation level).

Stratified Sampling

Stratified sampling ensures that one or more discrete features within the training and test
sets will have a similar distribution as in the original task containing all observations. This
is especially useful when a discrete feature is highly imbalanced and we want to make sure
that the distribution of that feature is similar in each resampling iteration (Figure 3.7).
We can also stratify on the target feature to ensure that each intermediate model is fit
on training data where the class distribution of the target is representative of the actual
task, this is useful to ensure target classes are not strongly under-represented by random
chance in individual resampling iterations, which would lead to degenerate estimations of
the generalization performance.

Unlike grouping, it is possible to stratify by multiple discrete features using the "stratum"
column role (Section 2.6). In this case, strata would be formed out of each combination of
the stratified features, e.g., for two stratified features A and B with levels Aa, Ab; Ba, Bb
respectively then the created stratum would have the levels AaBa, AaBb, AbBa, AbBb.

tsk("penguins") displays imbalance in the species column, as can be seen in the output
below:
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Available Data D) i
@ Majority Class
@ Minority Class Fold 1
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Fold 1 Dirain
Fold 2
Fold 2 Fold 1 Fold 2
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Imb&?lan.ced .Class Iteration 1 Iteration 2 Iteration 3
Distribution

Figure 3.7: Illustration of a three-fold cross-validation with stratification for an imbalanced
binary classification task with a majority class that is about twice as large as the minority
class. In each resampling iteration, the class distribution from the available data is preserved
(which is not necessarily the case for cross-validation without stratification).

prop.table(table(tsk_penguins$data(cols = "species")))

species
Adelie Chinstrap Gentoo
0.4419 0.1977 0.3605

Without specifying a "stratum" column role, the species column may have quite different

class distributions across the CV folds, as can be seen in the example below.

rsmp_cv1i0 = rsmp("cv", folds = 10)
rsmp_cvi0$instantiate (tsk_penguins)

foldl = prop.table(table(tsk_penguins$data(rows = rsmp_cviO$test_set (1),

cols = "species")))
fold2 = prop.table(table(tsk_penguins$data(rows = rsmp_cviO$test_set(2),
cols = "species")))

rbind("Fold 1" = foldl, "Fold 2" = fold2)

Adelie Chinstrap Gentoo
Fold 1 0.6286 0.1143 0.2571
Fold 2 0.5143 0.1714 0.3143

We can see across folds how Chinstrap is represented quite differently (0.11 vs. 0.17)

When imbalance is severe, minority classes might not occur in the training sets entirely.
Consequently, the intermediate models within these resampling iterations will never predict
the missing class, resulting in a misleading performance estimate for any resampling strategy



66 FEvaluation and Benchmarking

without stratification. The code below uses species as "stratum" column role to illustrate
that the distribution of species in each test set will closely match the original distribution:

tsk_str = tsk("penguins")

# set species to have both the 'target' and 'stratum' column role
tsk_str$set_col_roles("species", c("target", "stratum"))
rsmp_cviO$instantiate (tsk_str)

foldl = prop.table(table(tsk_str$data(rows = rsmp_cviO$test_set (1),

cols = "species")))
fold2 = prop.table(table(tsk_str$data(rows = rsmp_cviO$test_set(2),
cols = "species")))

rbind("Fold 1" = foldl, "Fold 2" = fold2)

Adelie Chinstrap Gentoo
Fold 1 0.4444 0.1944 0.3611
Fold 2 0.4444 0.1944 0.3611

You can view the observations that fall into each stratum using the $strata field of a Task
object, this can be particularly useful when we are interested in multiple strata:

tsk_str$set_col_roles("year", "stratum")
tsk_str$strata

N row_id
50 1,2,3,4,5,6,...
50 51,52,53,54,55,56, ...
52 101,102,103,104,105,106, ...
34 153,154,155,156,157,158, ...
46 187,188,189,190,191,192, ...
44 233,234,235,236,237,238, ...
26 277,278,279,280,281,282, ...
18 303,304,305,306,307,308, ...
24 321,322,323,324,325,326, ...

© 00 N O O d W N -

# N above matches with numbers in table below
table(tsk_penguins$data(cols = c("species", "year")))

year
species 2007 2008 2009
Adelie 50 50 52
Chinstrap 26 18 24
Gentoo 34 46 44
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3.3 Benchmarking

Benchmarking in supervised machine learning refers to the comparison of different learners
on one or more tasks. When comparing multiple learners on a single task or on a domain
consisting of multiple similar tasks, the main aim is often to rank the learners according to
a pre-defined performance measure and to identify the best-performing learner for the con-
sidered task or domain. When comparing multiple learners on multiple tasks, the main aim
is often more of a scientific nature, e.g., to gain insights into how different learners perform
in different data situations or whether there are certain data properties that heavily affect
the performance of certain learners (or certain hyperparameters of learners). It is common
(and good) practice for algorithm designers to analyze the generalization performance or
runtime of a newly proposed learning algorithm in comparison to existing learners in a
benchmark experiment. Since benchmarks usually consist of many evaluations that can be
run independently of each other, m1r3 offers the possibility of parallelizing them automat-
ically, which we demonstrate in Section 10.1.2. In this section, we will focus on the basic
setup of benchmark experiments that will be applicable in the majority of use cases, in
Chapter 11 we will look at more complex, large-scale, benchmark experiments.

3.3.1 benchmark()

Benchmark experiments in mlr3 are conducted with benchmark(), which simply runs
resample() on each task and learner separately, then collects the results. The provided
resampling strategy is automatically instantiated on each task to ensure that all learners
are compared against the same training and test data.

To use the benchmark() function we first call benchmark_grid(), which constructs an
exhaustive design to describe all combinations of the learners, tasks and resamplings to be
used in a benchmark experiment, and instantiates the resampling strategies. By example,
below we set up a design to see if a random forest, decision tree, or featureless baseline
(Section 2.2.4), performs best across two classification tasks.

tasks = tsks(c("german_credit", "sonar"))

learners = lrns(c("classif.rpart", "classif.ranger",
"classif.featureless"), predict_type = "prob")

rsmp_cv5 = rsmp("cv", folds = 5)

design = benchmark_grid(tasks, learners, rsmp_cvb)

head(design)

task learner resampling
1: german_credit classif.rpart cv
2: german_credit classif.ranger cv
3: german_credit classif.featureless cv
4: sonar classif.rpart cv
5: sonar classif.ranger cv
6: sonar classif.featureless cv

The resulting design is essentially just a data.table, which can be modified if you want
to remove particular combinations or could even be created from scratch without the
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benchmark_grid() function. Note that this data.table has list columns that contain R6

objects of tasks, learners, and resampling instances.

Reproducibility When Using benchmark_grid ()

By default, benchmark_grid () instantiates the resamplings on the tasks, which means
that concrete train-test splits are generated. Since this process is stochastic, it is
necessary to set a seed before calling benchmark_grid () to ensure reproducibility of

the data splits.

The constructed benchmark design can then be passed to benchmark() to run the experi-
ment and the result is a BenchmarkResult object:

bmr = benchmark(design)

bmr
<BenchmarkResult>
nr task_id

1 german_credit
2 german_credit
3 german_credit

4 sonar
5 sonar
6 sonar

1 variable(s) not

of 30 rows with 6 resampling runs
learner_id resampling_id iters warnings

classif.rpart
classif.ranger
classif.featureless
classif.rpart
classif.ranger
classif.featureless
shown: [errors]

cv
cv
cv
cv
cv
cv

5

oo o1 oot
O O O O O O

As benchmark () is just an extension of resample(), we can once again use $score(), or
$aggregate () depending on your use-case, though note that in this case $score() will
return results over each fold of each learner/task/resampling combination.

bmr$score() [c(1, 7, 13),

.(iteration, task_id, learner_id, classif.ce)]

iteration task_id learner_id classif.ce

1: 1 german_credit classif.rpart 0.245
2 german_credit classif.ranger 0.170

3: 3 german_credit classif.featureless 0.315

bmr$aggregate() [, .(task_id, learnmer_id, classif.ce)]

task_id
german_credit
german_credit
german_credit
sonar

sonar

O WN -

sonar

learner_id classif.ce

classif.rpart
classif.ranger
classif.featureless
classif.rpart
classif.ranger
classif.featureless

0

O O O O O

.2620
.2220
.3000
.3365
.1871
.5388

This would conclude a basic benchmark experiment where you can draw tentative conclu-
sions about model performance, in this case we would possibly conclude that the random
forest is the best of all three models on each task. We draw conclusions cautiously here as
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we have not run any statistical tests or included standard errors of measures, so we cannot
definitively say if one model outperforms the other.

As the results of $score() and $aggregate () are returned in a data.table, you can post-
process and analyze the results in any way you want. A common mistake is to average the
learner performance across all tasks when the tasks vary significantly. This is a mistake as
averaging the performance will miss out important insights into how learners compare on
‘easier’ or more ‘difficult’ predictive problems. A more robust alternative to compare the
overall algorithm performance across multiple tasks is to compute the ranks of each learner
on each task separately and then calculate the average ranks. This can provide a better
comparison as task-specific ‘quirks’ are taken into account by comparing learners within
tasks before comparing them across tasks. However, using ranks will lose information about
the numerical differences between the calculated performance scores. Analysis of benchmark
experiments, including statistical tests, is covered in more detail in Section 11.3.

3.3.2 BenchmarkResult Objects

A BenchmarkResult object is a collection of multiple ResampleResult objects.

bmrdt = as.data.table(bmr)
bmrdt[1:2, .(task, learner, resampling, iteration)]

task learner
1: <TaskClassif:german_credit> <LearnerClassifRpart:classif.rpart>
2: <TaskClassif:german_credit> <LearnerClassifRpart:classif.rpart>
2 variable(s) not shown: [resampling, iteration]

The contents of a BenchmarkResult and ResampleResult (Section 3.2.3) are almost iden-
tical and the stored ResampleResults can be extracted via the $resample_result(i)
method, where i is the index of the performed resample experiment. This al-
lows us to investigate the extracted ResampleResult and individual resampling it-
erations as shown in Section 3.2, as well as the predictions from each fold with
$resample_result(i)$predictions().

rrl = bmr$resample_result (1)
rrl

<ResampleResult> with 5 resampling iterations

task_id learner_id resampling_id iteration prediction_test
german_credit classif.rpart cv 1 <PredictionClassif>
german_credit classif.rpart cv 2 <PredictionClassif>
german_credit classif.rpart cv 3 <PredictionClassif>
german_credit classif.rpart cv 4 <PredictionClassif>
german_credit classif.rpart cv 5 <PredictionClassif>

2 variable(s) not shown: [warnings, errors]
rr2 = bmr$resample_result(2)
In addition, as_benchmark_result () can be used to convert objects from ResampleResult

to BenchmarkResult. The c()-method can be used to combine multiple BenchmarkResult
objects, which can be useful when conducting experiments across multiple machines:


https://mlr3.mlr-org.com/reference/BenchmarkResult.html
https://mlr3.mlr-org.com/reference/ResampleResult.html
https://mlr3.mlr-org.com/reference/as_benchmark_result.html
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bmrl = as_benchmark_result(rril)
bmr2 = as_benchmark_result(rr2)

c(bmrl, bmr2)

<BenchmarkResult> of 10 rows with 2 resampling runs

nr task_id learner_id resampling_id iters warnings errors
1 german_credit classif.rpart cv 5 0 0
2 german_credit classif.ranger cv 5 0 0

Boxplots are most commonly used to visualize benchmark experiments as they can intu-
itively summarize results across tasks and learners simultaneously.

autoplot (bmr, measure = msr("classif.acc"))
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Figure 3.8: Boxplots of accuracy scores for each learner across resampling iterations and the
three tasks. Random forests (1rn("classif.ranger")) consistently outperforms the other
learners.

3.4 Evaluation of Binary Classifiers

In Section 2.5.3 we touched on the concept of a confusion matrix and how it can be used to
break down classification errors in more detail. In this section, we will look at specialized
performance measures for binary classification in more detail. We will first return to the
confusion matrix and discuss measures that can be derived from it and then will look at
ROC analysis which builds on these measures. See Chapters 7 and 8 of Provost and Fawcett
(2013) for a more detailed introduction to ROC measures.
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3.4.1 Confusion Matrix

To recap, a confusion matrix summarizes the following quantities in a two-dimensional
contingency table (see also Figure 3.9):

o True positives (TPs): Positive instances that are correctly classified as positive.

o True negatives (TNs): Negative instances that are correctly classified as negative.
o False positives (FPs): Negative instances that are incorrectly classified as positive.
o False negatives (FNs): Positive instances that are incorrectly classified as negative.

Different applications may have a particular interest in one (or multiple) of the aforemen-
tioned quantities. For example, the tsk("spam") classification task is concerned with clas-
sifying if mail is spam (positive class) or not (negative class). In this case, we are likely to
accept FNs (some spam classified as genuine mail) as long as we have a low number of FPs
(genuine and possibly important mail classified as spam). In another example, say we are
predicting if a travel bag contains a weapon (positive class) or not (negative class) at an
airport. This classifier must have a very high number of TPs (as FNs are not acceptable at
all), even if this comes at the expense of more FPs (false alarms).

As we saw in Section 2.5.3, it is possible for a classifier to have a good classification accu-
racy but to overlook the nuances provided by a full confusion matrix, as in the following
tsk("german_credit") example:

tsk_german = tsk("german_credit")
lrn_ranger = lrn("classif.ranger", predict_type = "prob")
splits = partition(tsk_german, ratio = 0.8)

lrn_ranger$train(tsk_german, splits$train)
prediction = lrn_ranger$predict(tsk_german, splits$test)
prediction$score(msr("classif.acc"))

classif.acc
0.795

prediction$confusion

truth
response good bad
good 131 34
bad 7 28

The classification accuracy only takes into account the TPs and TNs, whereas the confusion
matrix provides a more holistic picture of the classifier’s performance.

On their own, the absolute numbers in a confusion matrix can be less useful when there is
class imbalance. Instead, several normalized measures can be derived (Figure 3.9):

e True Positive Rate (TPR), Sensitivity or Recall: How many of the true positives
did we predict as positive?

o True Negative Rate (TNR) or Specificity: How many of the true negatives did we
predict as negative?

o False Positive Rate (FPR), or 1— Specificity: How many of the true negatives did
we predict as positive?
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o Positive Predictive Value (PPV) or Precision: If we predict positive how likely is it
a true positive?

¢ Negative Predictive Value (NPV): If we predict negative how likely is it a true
negative?

e Accuracy (ACC): The proportion of correctly classified instances out of the total number
of instances.

e Fl-score: The harmonic mean of precision and recall, which balances the trade-off be-

tween precision and recall. It is calculated as 2 x LrecisionxRecall
Precision+Recall

True Class y
n _

< . TP
EE
£ 0 TN
& — FN TN NPV = mmw

P TN TP+TN

TPR = rprpy | TNR = mpory | ACC = spmpieners

Figure 3.9: Binary confusion matrix of ground truth class vs. predicted class.

The mlr3measures package allows you to compute several common confusion matrix-based
measures using the confusion_matrix() function:

mlr3measures::confusion_matrix(truth = prediction$truth,
response = prediction$response, positive = tsk_german$positive)

truth
response good bad
good 131 34
bad 7 28
acc : 0.7950; ce 0.2050; dor : 15.4118; f1 0.8647
fdr : 0.2061; fnr : 0.0507; fomr: 0.2000; fpr : 0.5484
mcc : 0.4880; npv : 0.8000; ppv : 0.7939; tnr : 0.4516
tpr : 0.9493

We now have a better idea of the random forest predictions on tsk("german_credit"),
in particular, the false positive rate is quite high. It is generally difficult to achieve a high
TPR and low FPR simultaneously because there is often a trade-off between the two rates.
When a binary classifier predicts probabilities instead of discrete classes (predict_type
= "prob"), we could set a threshold to cut off the probabilities to change how we assign
observations to the positive/negative class (see Section 2.5.4). Increasing the threshold for
identifying the positive cases, leads to a higher number of negative predictions, fewer positive
predictions, and therefore a lower (and better) FPR but a lower (and worse) TPR — the
reverse holds if we lower the threshold. Instead of arbitrarily changing a threshold to ‘game’
these two numbers, a more robust way to tradeoff between TPR and FPR is to use ROC
analysis, discussed next.


https://cran.r-project.org/package=mlr3measures
https://www.rdocumentation.org/packages/mlr3measures/topics/confusion_matrix
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3.4.2 ROC Analysis

ROC (Receiver Operating Characteristic) analysis is widely used to evaluate binary classi-
fiers by visualizing the trade-off between the TPR and the FPR.

The ROC curve is a line graph with TPR on the y-axis and the FPR on the x-axis. To
understand the usefulness of this curve, first consider the simple case of a hard labeling
classifier (predict_type = "response") that classifies observations as either positive or
negative. This classifier would be represented as a single point in the ROC space (see
Figure 3.10, panel (a)). The best classifier would lie on the top-left corner where the TPR
is 1 and the FPR is 0. Classifiers on the diagonal predict class labels randomly (with
different class proportions). For example, if each positive instance will be randomly classified
(ignoring features) with 25% as the positive class, we would obtain a TPR of 0.25. If we
assign each negative instance randomly to the positive class, we would have an FPR of 0.25.
In practice, we should never obtain a classifier below the diagonal and a point in the ROC
space below the diagonal might indicate that the positive and negative class labels have
been switched by the classifier.

Warning in geom_text(aes(x = 0.5, y = 0.5, hjust = 0.5, vjust = -0.5, label
i Please consider using “annotate()” or provide this layer with data
containing a single row.
Warning in geom_text(aes(x = 0.5, y = 0.5, hjust = 0.5, vjust = -0.5, label
i Please consider using “annotate()” or provide this layer with data
containing a single row.
(@) (b)
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Figure 3.10: Panel (a): ROC space with best discrete classifier, two baseline classifiers — one
that always predicts the positive class and one that never predicts the positive class — and
three ‘real’ classifiers C1, C2, C3. We cannot say if C1 or C3 is better than the other as both
are better in one metric. C2 is clearly worse than C1 and C3, which are better in at least
one metric than C2 while not being worse in any other metric. Panel (b): ROC curves of the
best classifier (AUC = 1), of a random guessing classifier (AUC = 0.5), and the classifiers
Cl1, C3, and C2.

Now consider classifiers that predict probabilities instead of discrete classes. Using different
thresholds to cut off predicted probabilities and assign them to the positive and negative
class will lead to different TPRs and FPRs and by plotting these values across different
thresholds we can characterize the behavior of a binary classifier — this is the ROC curve.
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For example, we can use the previous Prediction object to compute all possible TPR and
FPR combinations by thresholding the predicted probabilities across all possible thresh-
olds, which is exactly what mlr3viz: :autoplot.PredictionClassif will do when type =
"roc" is selected:

autoplot (prediction, type = "roc")
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Figure 3.11: ROC-curve based on the german_credit dataset and the classif.ranger
random forest learner. Recall FPR = 1— Specificity and TPR = Sensitivity.

A natural performance measure that can be derived from the ROC curve is the area under
the curve (AUC), implemented in msr("classif.auc"). The AUC can be interpreted as the
probability that a randomly chosen positive instance has a higher predicted probability of
belonging to the positive class than a randomly chosen negative instance. Therefore, higher
values (closer to 1) indicate better performance. Random classifiers (such as the featureless
baseline) will always have an AUC of (approximately, when evaluated empirically) 0.5 (see
Figure 3.10, panel (b)).

prediction$score(msr("classif.auc"))

classif.auc
0.8319

Evaluating our random forest on tsk("german_credit") results in an AUC of around 0.83,
which is acceptable but could be better.

@ Multiclass ROC and AUC

Extensions of ROC analysis for multiclass classifiers exist (see e.g., Hand and Till
2001) but we only cover the more common binary classification case in this book.
Generalizations of the AUC measure to multiclass classification are implemented in
mlr3, see msr("classif.mauc_aulp").

We can also plot the precision-recall curve (PRC) which visualizes the PPV /precision
vs. TPR/recall. The main difference between ROC curves and PR curves is that the number
of true-negatives are ignored in the latter. This can be useful in imbalanced populations
where the positive class is rare, and where a classifier with high TPR may still not be very


https://mlr3.mlr-org.com/reference/Prediction.html
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informative and have low PPV. See Davis and Goadrich (2006) for a detailed discussion
about the relationship between the PRC and ROC curves.

autoplot(prediction, type = "prc")
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Figure 3.12: Precision-Recall curve based on tsk("german_credit") and
lrn("classif.ranger").

Another useful way to think about the performance of a classifier is to visualize the rela-
tionship of a performance metric over varying thresholds, for example, see Figure 3.13 to
inspect the FPR and accuracy across all possible thresholds:

autoplot(prediction, type = "threshold", measure = msr("classif.fpr"))
autoplot(prediction, type = "threshold", measure = msr("classif.acc"))
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Figure 3.13: Comparing threshold and FPR (left) with threshold and accuracy (right) for
the random forest trained on tsk("german_credit").

This visualization would show us that changing the threshold from the default 0.5 to a
higher value like 0.7 would greatly reduce the FPR while reducing accuracy by only a few
percentage points. Depending on the problem at hand, this might be a perfectly desirable
trade-off.

These visualizations are also available for ResampleResult objects. In this case, the predic-
tions of individual resampling iterations are merged before calculating a ROC or PR curve

(micro averaged):


https://mlr3.mlr-org.com/reference/ResampleResult.html
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rr = resample(
task = tsk("german_credit"),
learner = lrn("classif.ranger", predict_type = "prob"),
resampling = rsmp("cv", folds = 5)

)

autoplot(rr, type = "roc"

autoplot(rr, type = "prc")
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Figure 3.14: Comparing ROC (left) and PR curve (right) for a random forest trained on
tsk("german_credit").

Finally, we can visualize ROC/PR curves for a BenchmarkResult to compare multiple
learners on the same Task:

library(patchwork)

design = benchmark_grid(
tasks = tsk("german_credit"),
learners = lrns(c("classif.rpart", "classif.ranger"),
predict_type = "prob"),
resamplings = rsmp("cv", folds = 5)
)
bmr = benchmark(design)
autoplot (bmr, type = "roc") + autoplot(bmr, type = "prc") +
plot_layout(guides = "collect")

3.5 Conclusion

In this chapter, we learned how to estimate the generalization performance of a model via
resampling strategies, from holdout to cross-validation and bootstrap, and how to automate
the comparison of multiple learners in benchmark experiments. We also covered the basics
of performance measures for binary classification, including the confusion matrix, ROC
analysis, and precision-recall curves. These topics are fundamental in supervised learning
and will continue to be built upon throughout this book. In particular, Chapter 4 utilizes
evaluation in automated model tuning to improve performance, in Chapter 11 we look at


https://mlr3.mlr-org.com/reference/BenchmarkResult.html
https://mlr3.mlr-org.com/reference/Task.html
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Figure 3.15: Comparing random forest (green) and decision tree (purple) using ROC and
PR Curves.

large benchmarks and their statistical analysis, and in Chapter 13 we will take a look at
specialized tasks that require different resampling strategies.

Table 3.1: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor /Function Fields/Methods

PredictionClassif classif_lrn$predict() confusion_matrix();
autoplot (some_prediction_classif,
type = "roc"

- partition() -
Resampling rsmp () $instantiate()
ResampleResult resample () $score(); $aggregate();

$predictions();
as_benchmark_result();
autoplot (some_resample_result,
type = "roc")

- benchmark_grid() -

BenchmarkResult benchmark () $aggregate(); $resample_result();
$score();
autoplot (some_benchmark_result,
type = "roc")

3.6 Exercises

1. Apply a repeated cross-validation resampling strategy on tsk("mtcars") and
evaluate the performance of 1lrn("regr.rpart"). Use five repeats of three folds
each. Calculate the MSE for each iteration and visualize the result. Finally, cal-
culate the aggregated performance score.


https://mlr3.mlr-org.com/reference/PredictionClassif.html
https://www.rdocumentation.org/packages/mlr3measures/topics/confusion_matrix
https://mlr3.mlr-org.com/reference/partition.html
https://mlr3.mlr-org.com/reference/Resampling.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3.mlr-org.com/reference/ResampleResult.html
https://mlr3.mlr-org.com/reference/resample.html
https://mlr3.mlr-org.com/reference/benchmark_grid.html
https://mlr3.mlr-org.com/reference/BenchmarkResult.html
https://mlr3.mlr-org.com/reference/benchmark.html
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Use tsk("spam") and five-fold CV to benchmark lrn("classif.ranger"),
lrn("classif.log_reg"), and lrn("classif.xgboost", nrounds = 100)
with respect to AUC. Which learner appears to perform best? How confident
are you in your conclusion? Think about the stability of results and investigate
this by re-rerunning the experiment with different seeds. What can be done to
improve this?

A colleague reports a 93.1% classification accuracy using lrn("classif.rpart")
on tsk("penguins_simple"). You want to reproduce their results and ask them
about their resampling strategy. They said they used a custom three-fold CV with
folds assigned as factor (task$row_ids %% 3). See if you can reproduce their
results.

(*) Program your own ROC plotting function without using mlr3’s autoplot ()
function. The signature of your function should be my_roc_plot(task,
learner, train_indices, test_indices). Your function should use the
$set_threshold() method of Prediction, as well as mlr3measures.
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Machine learning algorithms usually include parameters and hyperparameters. Parameters
are the model coefficients or weights or other information that are determined by the learning
algorithm based on the training data. In contrast, hyperparameters, are configured by the
user and determine how the model will fit its parameters, i.e., how the model is built.
Examples include setting the number of trees in a random forest, penalty settings in support
vector machines, or the learning rate in a neural network.

The goal of hyperparameter optimization (HPO) or model tuning is to find the optimal
configuration of hyperparameters of a machine learning algorithm for a given task. There is
no closed-form mathematical representation (nor analytic gradient information) for model-
agnostic HPO. Instead, we follow a black box optimization approach: a machine learning
algorithm is configured with values chosen for one or more hyperparameters, this algorithm
is then evaluated (using a resampling method) and its performance is measured. This pro-
cess is repeated with multiple configurations and finally, the configuration with the best
performance is selected (Figure 4.1). HPO closely relates to model evaluation (Chapter 3)
as the objective is to find a hyperparameter configuration that optimizes the generalization
performance. Broadly speaking, we could think of finding the optimal model configuration
in the same way as selecting a model from a benchmark experiment, where in this case each
model in the experiment is the same algorithm but with different hyperparameter config-
urations. For example, we could benchmark three support vector machines (SVMs) with
three different cost values. However, human trial-and-error is time-consuming, subjective
and often biased, error-prone, and computationally inefficient. Instead, many sophisticated
hyperparameter optimization methods (or ‘tuners’, see Section 4.1.4) have been developed
over the past few decades for robust and efficient HPO. Besides simple approaches such as a
random search or grid search, most hyperparameter optimization methods employ iterative
techniques that propose different configurations over time, often exhibiting adaptive be-
havior guided towards potentially optimal hyperparameter configurations. These methods
continually propose new configurations until a termination criterion is met, at which point
the best configuration so far is returned (Figure 4.1). For more general details on HPO and
more theoretical background, we recommend Bischl et al. (2023) and Feurer and Hutter
(2019).

Note that m1r3 never does any automatic hyperparameter optimization that the user did
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Figure 4.1: Representation of the hyperparameter optimization loop in mlr3tuning. Blue -
Hyperparameter optimization loop. Purple - Objects of the tuning instance supplied by the
user. Blue-Green - Internally created objects of the tuning instance. Green - Optimization
Algorithm.

4.1 Model Tuning

mlr3tuning is the hyperparameter optimization package of the mlr3 ecosystem. At the
heart of the package are the R6 classes

e TuningInstanceBatchSingleCrit, a tuning ‘instance’ that describes the optimization
problem and store the results; and
e TunerBatch which is used to configure and run optimization algorithms.

In this section, we will cover these classes as well as other supporting functions and classes.
Throughout this section, we will look at optimizing an SVM classifier from e1071 on
tsk("sonar") as a running example.

4.1.1 Learner and Search Space

The tuning process begins by deciding which hyperparameters to tune and what range to
tune them over. The first place to start is therefore picking a learner and looking at the
possible hyperparameters to tune with $param_set:


https://mlr3tuning.mlr-org.com
https://mlr3tuning.mlr-org.com/reference/TuningInstanceBatchSingleCrit.html
https://mlr3tuning.mlr-org.com/reference/TunerBatch.html
https://cran.r-project.org/package=e1071
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as.data.table(lrn("classif.svm")$param_set) [,
.(id, class, lower, upper, nlevels)]

id class lower upper nlevels
1: cachesize ParamDbl -Inf Inf Inf
2: class.weights ParamUty NA NA Inf
3: coef0 ParamDbl -Inf Inf Inf
4: cost ParamDbl 0 Inf Inf
5: cross ParamInt 0 Inf Inf
12: nu ParamDbl -Inf Inf Inf
13: scale ParamUty NA NA Inf
14: shrinking ParamLgl NA NA 2
15: tolerance ParamDbl 0 Inf Inf
16: type ParamFct NA NA 2

Given infinite resources, we could tune all hyperparameters jointly, but in reality that is not
possible (or maybe necessary), so usually only a subset of hyperparameters can be tuned.

This subset of possible hyperparameter values to tune over is referred to as the search

space or tuning space. In this example we will tune the numeric regularization and kernel  Search
width hyperparameters, cost and gamma; see the help page for svm() for details. In practice, Space
search spaces are usually more complex and can require expert knowledge to define them.
Section 4.4 provides more detailed insight into the creation of tuning spaces, including using
mlr3tuningspaces to load predefined search spaces.

@ Untunable Hyperparameters

In rare cases, parameter sets may include hyperparameters that should not be tuned.
These will usually be ‘technical’ (or ‘control’) parameters that provide information
about how the model is being fit but do not control the training process itself, for
example, the verbose hyperparameter in 1rn("classif.ranger") controls how much
information is displayed to the user during training.

For numeric hyperparameters (we will explore others later) one must specify the bounds
to tune over. We do this by constructing a learner and using to_tune() to set the lower
and upper limits for the parameters we want to tune. This function allows us to mark the
hyperparameter as requiring tuning in the specified range.

learner = lrn("classif.svm",

type = "C-classification",
kernel = "radial",
cost = to_tune(le-1, 1e5),
gamma = to_tune(le-1, 1)

)

learner

<LearnerClassifSVM:classif.svm>: Support Vector Machine

* Model: -

* Parameters: cost=<RangeTuneToken>, gamma=<RangeTuneToken>,
kernel=radial, type=C-classification

* Packages: mlr3, mlr3learners, el071


https://www.rdocumentation.org/packages/e1071/topics/svm
https://mlr3tuningspaces.mlr-org.com
https://paradox.mlr-org.com/reference/to_tune.html
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*x Predict Types: [response], prob
* Feature Types: logical, integer, numeric
* Properties: multiclass, twoclass

Here we have constructed a classification SVM, 1lrn("classif.svm"), selected the type
of model as "C-classification", set the kernel to "radial", and specified that we plan
to tune the cost and gamma parameters over the range [0.1,10°] and [0.1, 1] respectively
(though these are usually tuned on a log scale, see Section 4.1.5). Note that calling $train()
on a learner with a tune token (e.g., cost=<RangeTuneToken>) will throw an error.

Now we have decided which hyperparameters to tune, we specify when to stop the tuning
process.

4.1.2 Terminator

mlr3tuning includes many methods to specify when to terminate an algorithm (Ta-
ble 4.1), which are implemented in Terminator classes. Terminators are stored in the
mlr_terminators dictionary and are constructed with the sugar function trm().

Table 4.1: Terminators available in mlr3tuning at the time of publication, their function
call and default parameters. A complete and up-to-date list can be found at https://mlr-
org.com/terminators.html.

Terminator Function call and default parameters

Clock Time trm("clock_time")

Combo trm("combo", any = TRUE)

None trm("none")

Number of Evaluations trm("evals", n_evals = 100, k = 0)
Performance Level trm("perf_reached", level = 0.1)

Run Time trm("run_time", secs = 30)

Stagnation trm("stagnation", iters = 10, threshold = 0)

The most commonly used terminators are those that stop the tuning after a certain time
(trm("run_time")) or a given number of evaluations (trm("evals")). Choosing a runtime
is often based on practical considerations and intuition. Using a time limit can be impor-
tant on compute clusters where a maximum runtime for a compute job may need to be
specified. trm("perf_reached") stops the tuning when a specified performance level is
reached, which can be helpful if a certain performance is seen as sufficient for the practical
use of the model, however, if this is set too optimistically the tuning may never terminate.
trm("stagnation") stops when no progress greater than the threshold has been made
for a set number of iterations. The threshold can be difficult to select as the optimiza-
tion could stop too soon for complex search spaces despite room for (possibly significant)
improvement. trm("none") is used for tuners that control termination themselves and so
this terminator does nothing. Finally, any of these terminators can be freely combined by
using trm("combo"), which can be used to specify if HPO finishes when any (any = TRUE)
terminator is triggered or when all (any = FALSE) are triggered.

4.1.3 Tuning Instance with ti

The tuning instance collects the tuner-agnostic information required to optimize a model,
i.e., all information about the tuning process, except for the tuning algorithm itself. This


https://bbotk.mlr-org.com/reference/Terminator.html
https://bbotk.mlr-org.com/reference/mlr_terminators.html
https://bbotk.mlr-org.com/reference/trm.html
https://mlr-org.com/terminators.html
https://mlr-org.com/terminators.html
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includes the task to tune over, the learner to tune, the resampling method and measure
used to analytically compare hyperparameter optimization configurations, and the termi-
nator to determine when the measure has been optimized ‘enough’. This implicitly defines
a “black box” objective function, mapping hyperparameter configurations to (stochastic)
performance values, to be optimized. This concept will be revisited in Chapter 5.

A tuning instance can be constructed explicitly with the ti() function, or we can tune a
learner with the tune () function, which implicitly creates a tuning instance, as shown in
Section 4.2. We cover the ti() approach first as this allows finer control of tuning and a
more nuanced discussion about the design and use of mlr3tuning.

Continuing our example, we will construct a single-objective tuning problem (i.e., tuning
over one measure) by using the ti () function to create a TuningInstanceBatchSingleCrit,
we will return to multi-objective tuning in Section 5.2.

For this example, we will use three-fold CV and optimize the classification error measure.
Note that in the next section, we will continue our example with a grid search tuner, so we
select trm("none") below as we will want to iterate over the full grid without stopping too
soon.

tsk_sonar = tsk("sonar"

learner = lrn("classif.svm",
cost = to_tune(le-1, 1eb),
gamma = to_tune(le-1, 1),
kernel = "radial",
type = "C-classification"

)

instance = ti(
task = tsk_somnar,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("none")

instance

<TuningInstanceBatchSingleCrit>

* State: Not optimized

* Objective: <ObjectiveTuningBatch:classif.svm_on_sonar>
* Search Space:

id class lower upper nlevels
1: cost ParamDbl 0.1 1e+05 Inf
2: gamma ParamDbl 0.1 1e+00 Inf

* Terminator: <TerminatorNone>

4.1.4 Tuner

With all the pieces of our tuning problem assembled, we can now decide how to tune our
model. There are multiple Tuner classes in mlr3tuning, which implement different HPO

Tuner
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(or more generally speaking black box optimization) algorithms (Table 4.2).

Table 4.2: Tuning algorithms available in mlr3tuning, their function call and the package
in which the algorithm is implemented. A complete and up-to-date list can be found at
https://mlr-org.com/tuners.html.

Tuner Function call Package
Random Search tnr ("random_search") mlr3tuning
Grid Search tnr ("grid_search") mlr3tuning
Bayesian Optimization tnr ("mbo") mlr3mbo
CMA-ES tonr ("cmaes") adagio

Iterated Racing tnr("irace") irace
Hyperband tnr ("hyperband") mlr3hyperband
Generalized Simulated Annealing tnr ("gensa") GenSA
Nonlinear Optimization tnr("nloptr") nloptr

Search strategies

Grid search and random search (Bergstra and Bengio 2012) are the most basic algorithms
and are often selected first in initial experiments. The idea of grid search is to exhaustively
evaluate every possible combination of given hyperparameter values. Categorical hyperpa-
rameters are usually evaluated over all possible values they can take. Numeric and integer
hyperparameter values are then spaced equidistantly in their box constraints (upper and
lower bounds) according to a given resolution, which is the number of distinct values to try
per hyperparameter. Random search involves randomly selecting values for each hyperpa-
rameter independently from a pre-specified distribution, usually uniform. Both methods are
non-adaptive, which means each proposed configuration ignores the performance of previ-
ous configurations. Due to their simplicity, both grid search and random search can handle
mixed search spaces (i.e., hyperparameters can be numeric, integer, or categorical) as well
as hierarchical search spaces (Section 4.4).

Adaptive algorithms

Adaptive algorithms learn from previously evaluated configurations to find good configu-
rations quickly, examples in m1r3 include Bayesian optimization (also called model-based
optimization), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Tterated Rac-
ing, and Hyperband.

Bayesian optimization (e.g., Snoek, Larochelle, and Adams 2012) describes a family of
iterative optimization algorithms that use a surrogate model to approximate the unknown
function that is to be optimized — in HPO this would be the mapping from a hyperparameter
configuration to the estimated generalization performance. If a suitable surrogate model is
chosen, e.g. a random forest, Bayesian optimization can be quite flexible and even handle
mixed and hierarchical search spaces. Bayesian optimization is discussed in full detail in
Section 5.4.

CMA-ES (Hansen and Auger 2011) is an evolutionary strategy that maintains a probabil-
ity distribution over candidate points, with the distribution represented by a mean vector
and covariance matrix. A new set of candidate points is generated by sampling from this
distribution, with the probability of each candidate being proportional to its performance.
The covariance matrix is adapted over time to reflect the performance landscape. Further
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evolutionary strategies are available in m1r3 via the miesmuschel package, however, these
will not be covered in this book.

Racing algorithms work by iteratively discarding configurations that show poor performance,
as determined by statistical tests. Iterated Racing (Lépez-Ibdnez et al. 2016) starts by
‘racing’ down an initial population of randomly sampled configurations from a parameterized
density and then uses the surviving configurations of the race to stochastically update the
density of the subsequent race to focus on promising regions of the search space, and so on.

Multi-fidelity HPO is an adaptive method that leverages the predictive power of computa-
tionally cheap lower fidelity evaluations (i.e., poorer quality predictions such as those arising
from neural networks with a small number of epochs) to improve the overall optimization
efficiency. This concept is used in Hyperband (Li et al. 2018), a popular multi-fidelity hyper-
parameter optimization algorithm that dynamically allocates increasingly more resources
to promising configurations and terminates low-performing ones. Hyperband is discussed in
full detail in Section 5.3.

Other implemented algorithms for numeric search spaces are Generalized Simulated An-
nealing (Xiang et al. 2013; Tsallis and Stariolo 1996) and various nonlinear optimization
algorithms.

Choosing strategies

As a rule of thumb, if the search space is small or does not have a complex structure, grid
search may be able to exhaustively evaluate the entire search space in a reasonable time.
However, grid search is generally not recommended due to the curse of dimensionality —
the grid size ‘blows up’ very quickly as the number of parameters to tune increases — and
insufficient coverage of numeric search spaces. By construction, grid search cannot evalu-
ate a large number of unique values per hyperparameter, which is suboptimal when some
hyperparameters have minimal impact on performance while others do. In such scenarios,
random search is often a better choice as it considers more unique values per hyperparameter
compared to grid search.

For higher-dimensional search spaces or search spaces with more complex structure, more
guided optimization algorithms such as evolutionary strategies or Bayesian optimization
tend to perform better and are more likely to result in peak performance. When choosing
between evolutionary strategies and Bayesian optimization, the cost of function evaluation
is highly relevant. If hyperparameter configurations can be evaluated quickly, evolutionary
strategies often work well. On the other hand, if model evaluations are time-consuming and
the optimization budget is limited, Bayesian optimization is usually preferred, as it is quite
sample efficient compared to other algorithms, i.e., less function evaluations are needed to
find good configurations. Hence, Bayesian optimization is usually recommended for HPO.
While the optimization overhead of Bayesian optimization is comparably large (e.g., in each
iteration, training of the surrogate model and optimizing the acquisition function), this has
less of an impact in the context of relatively costly function evaluations such as resampling
of ML models.

Finally, in cases where the hyperparameter optimization problem involves a meaningful
fidelity parameter (e.g., number of epochs, number of trees, number of boosting rounds) and
where the optimization budget needs to be spent efficiently, multi-fidelity hyperparameter
optimization algorithms like Hyperband may be worth considering. For further details on
different tuners and practical recommendations, we refer to Bischl et al. (2023).
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@ $param_classes and $properties

The $param_classes and $properties fields of a Tuner respectively provide informa-
tion about which classes of hyperparameters can be handled and what properties the
tuner can handle (e.g., hyperparameter dependencies, which are shown in Section 4.4,
or multicriteria optimization, which is presented in Section 5.2):

tnr ("random_search")$param_classes
[1] "ParamLgl" "ParamInt" "ParamDbl" "ParamFct"

tnr ("random_search")$properties

[1] "dependencies" "single-crit" "multi-crit"

For our SVM example, we will use a grid search with a resolution of five for runtime reasons
here (in practice a larger resolution would be preferred). The resolution is the number
of distinct values to try per hyperparameter, which means in our example the tuner will
construct a 5x5 grid of 25 configurations of equally spaced points between the specified
upper and lower bounds. All configurations will be tried by the tuner (in random order)
until either all configurations are evaluated or the terminator (Section 4.1.2) signals that
the budget is exhausted. For grid and random search tuners, the batch_size parameter
controls how many configurations are evaluated at the same time when parallelization is
enabled (see Section 10.1.3), and also determines how many configurations should be applied
before the terminator should check if the termination criterion has been reached.

tuner = tnr("grid_search", resolution = 5, batch_size = 10)
tuner

<TunerBatchGridSearch>: Grid Search

* Parameters: batch_size=10, resolution=5

* Parameter classes: ParamlLgl, ParamInt, ParamDbl, ParamFct
* Properties: dependencies, single-crit, multi-crit

* Packages: mlr3tuning, bbotk

Control The resolution and batch_size parameters are termed control parameters of the tuner,
Parameters and other tuners will have other control parameters that can be set, as with learners these
are accessible with $param_set.

tuner$param_set

<ParamSet (3)>

id class lower upper nlevels default value
1: batch_size ParamInt 1 Inf Inf <NoDefault [0]> 10
2: resolution ParamInt 1 Inf Inf <NoDefault[0]> 5
3: param_resolutions ParamUty NA NA Inf <NoDefault[0]> [NULL]

While changing the control parameters of the tuner can improve optimal performance, we
have to take care that is likely the default settings will fit most needs. While it is not possible
to cover all application cases, mlr3tuning’s defaults were chosen to work well in most cases.
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However, some control parameters like batch_size often interact with the parallelization
setup (further described in Section 10.1.3) and may need to be adjusted accordingly.

Triggering the tuning process

Now that we have introduced all our components, we can start the tuning process. To do
this we simply pass the constructed TuningInstanceBatchSingleCrit to the $optimize ()
method of the initialized TunerBatch, which triggers the hyperparameter optimization loop
(Figure 4.1).

tuner$optimize (instance)

cost gamma learner_param_vals x_domain classif.ce
1: 25000 0.1 <list[4]> <list[2]> 0.2687

The optimizer returns the best hyperparameter configuration and the corresponding perfor-
mance, this information is also stored in instance$result. The first columns (here cost
and gamma) will be named after the tuned hyperparameters and show the optimal values
from the searched tuning spaces. The $learner_param_vals field of the $result lists the
optimal hyperparameters from tuning, as well as the values of any other hyperparameters
that were set, this is useful for onward model use (Section 4.1.6).

instance$result$learner_param_vals

[[1]1]
[[1]]$kernel
[1] "radial™"

[[11]$type
[1] "C-classification"

[[1]]$cost
[1] 25000

[[1]1]$gamma
[1] 0.1

The $x_domain field is most useful in the context of hyperparameter transformations, which
we will briefly turn to next.

Overconfident Performance Estimates

A common mistake when tuning is to report the performance estimated on the resam-
pling sets on which the tuning was performed (instance$result$classif.ce) as an
unbiased estimate of the model’s performance and to ignore its optimistic bias. The
correct method is to test the model on more unseen data, which can be efficiently
performed with nested resampling, we will discuss this in Section 4.3.2.
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4.1.5 Logarithmic Transformations

For many non-negative hyperparameters that have a large upper bound, tuning on a log-
arithmic scale can be more efficient than tuning on a linear scale. By example, consider
sampling uniformly in the interval [log(le — 5),log(1e5)] and then exponentiating the out-
come, the histograms in Figure 4.2 show how we are initially sampling within a narrow
range ([—11.5,11.5]) but then exponentiating results in the majority of points being rela-
tively small but a few being very large.

cost = runif (1000, log(le-5), log(leb))
exp_cost = exp(cost)

75 750

count
count

25

-10 -5 0 5 10 0 25000 50000 75000 100000
cost cost

(a) Linear scale sampled by the tuner. (b) Logarithmic scale seen by the learner.

Figure 4.2: Histograms of uniformly sampled values from the interval [log(le — 5),log(1e5)]
before (left) and after (right) exponentiation.

To add this transformation to a hyperparameter we simply pass logscale = TRUE to
to_tune().

learner = lrn("classif.svm",

cost = to_tune(le-5, 1leb, logscale = TRUE),
gamma = to_tune(le-5, 1e5, logscale = TRUE),
kernel = "radial",

type = "C-classification"

instance = ti(
task = tsk_sonar,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("none")

tuner$optimize (instance)
cost gamma learner_param_vals x_domain classif.ce
1: 5.756 -5.756 <list[4]> <list[2]> 0.1925

We can see from this example that using the log transformation improved the hyperparam-
eter search, as classif.ce is smaller.
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Note that the fields cost and gamma show the optimal values before transformation, whereas
x_domain and learner_param_vals contain optimal values after transformation, it is these
latter fields you would take forward for future model use.

instance$result$x_domain

[[111
[[1]]$cost
[1] 316.2

[[1]]$gamma
[1] 0.003162

In Section 4.4 we will look at how to implement more complex, custom transformations
for any hyperparameter or combination of hyperparameters. Now we will look at how to
put everything into practice so we can make use of the tuned model (and the transformed
hyperparameters).

4.1.6 Analyzing and Using the Result

Independently of whether you use ti() or tune (), or if you include transformations or not,
the created objects and the output are structurally the same and the instance’s archive lists
all evaluated hyperparameter configurations:

as.data.table(instance$archive) [1:3, .(cost, gamma, classif.ce)]

cost gamma classif.ce

1: -11.51 -11.513 0.5621
2: -11.561 -5.756 0.5621
3: -11.51 11.513 0.5621

Each row of the archive is a different evaluated configuration. The columns show the tested
configurations (before transformation) and the chosen performance measure. We can also
manually inspect the archive to determine other important features such as time of evalua-
tion, model runtime, and any errors or warnings that occurred during tuning.

as.data.table(instance$archive) [1:3,
. (timestamp, runtime_learners, errors, warnings)]

timestamp runtime_learners errors warnings

1: 2025-06-18 09:28:19 0.036 0 0
2: 2025-06-18 09:28:19 0.042 0 0
3: 2025-06-18 09:28:19 0.037 0 0

Another powerful feature of the instance is that we can score the internal ResampleResults
on a different performance measure, for example looking at false negative rate and false
positive rate as well as classification error:

as.data.table(instance$archive,
measures = msrs(c("classif.fpr", "classif.fnr")))[1:5 ,
.(cost, gamma, classif.ce, classif.fpr, classif.fnr)]
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cost gamma classif.ce classif.fpr classif.fnr

1: -11.51 -11.513 0.5621 0.6667 0.3333
2: -11.561 -5.756 0.5621 0.6667 0.3333
3: -11.51 11.513 0.5621 0.6667 0.3333
4: 0.00 -11.513 0.5621 0.6667 0.3333
5: 0.00 -5.756 0.2695 0.3392 0.1655

You can access all the resamplings combined in a BenchmarkResult object with
instance$archive$benchmark_result.

Finally, to visualize the results, you can use autoplot.TuningInstanceBatchSingleCrit
(Figure 4.3). In this example we can observe one of the flaws (by design) in grid search,
despite testing 25 configurations, we only saw five unique values for each hyperparameter.

autoplot(instance, type = "surface")
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Figure 4.3: Model performance with different configurations for cost and gamma. Bright
yellow regions represent the model performing worse and dark blue performing better. We
can see that high cost values and low gamma values achieve the best performance. Note
that we should not directly infer the performance of new unseen values from the heatmap
since it is only an interpolation based on a surrogate model (regr.ranger). However, we
can see the general interaction between the hyperparameters.

Training an optimized model

Once we found good hyperparameters for our learner through tuning, we can use them
to train a final model on the whole data. To do this we simply construct a new learner
with the same underlying algorithm and set the learner hyperparameters to the optimal
configuration:
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lrn_svm_tuned = lrn("classif.svm")
lrn_svm_tuned$param_set$values = instance$result_learner_param_vals

Now we can train the learner on the full dataset and we are ready to make predictions.
lrn_svm_tuned$train(tsk_sonar) $model

Call:

svm.default(x = data, y = task$truth(), type = "C-classification",
kernel = "radial", gamma = 0.00316227766016838, cost = 316.227766016838,
probability = (self$predict_type == "prob"))

Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 316.2

Number of Support Vectors: 93

4.2 Convenient Tuning with tune and auto_tuner

In the previous section, we looked at constructing and manually putting together the compo-
nents of HPO by creating a tuning instance using ti (), passing this to the tuner, and then
calling $optimize () to start the tuning process. mlr3tuning includes two helper methods
to simplify this process further.

The first helper function is tune (), which creates the tuning instance and calls $optimize ()
for you. You may prefer the manual method with ti () if you want to view and make changes
to the instance before tuning.

tnr_grid_search = tnr("grid_search", resolution = 5, batch_size = 5)

lrn_svm = 1lrn("classif.svm",
cost = to_tune(le-5, 1leb5, logscale = TRUE),
gamma = to_tune(le-5, 1leb, logscale = TRUE),
kernel = "radial",
type = "C-classification"

)

rsmp_cv3 = rsmp("cv", folds = 3)
msr_ce = msr("classif.ce")

instance = tune(
tuner = tnr_grid_search,
task = tsk_sonar,
learner = lrn_svm,
resampling = rsmp_cv3,
measures = mSr_ce
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)

instance$result

cost gamma learner_param_vals x_domain classif.ce
1: 0 -5.756 <list[4]><ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>