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Preface

The mlr package (Bischl et al. 2016) was first released on CRAN in 2013, with the core
design and architecture dating back further. Over time, the addition of many features led
to a complex design that made it too difficult for us to extend further. In hindsight, we
saw that some design and architecture choices in mlr made it difficult to support new
features, in particular with respect to ML pipelines. So in 2018, we set about working on a
reimplementation, which resulted in the first release of mlr3 on CRAN in July 2019.

Overview
The mlr3 ecosystem is the result of many years of methodological and applied research. This
book describes the resulting features and discusses best practices for ML, technical imple-
mentation details, and in-depth considerations for model optimization. This book may be
helpful for both practitioners who want to quickly apply machine learning (ML) algorithms
and researchers who want to implement, benchmark, and compare their new methods in a
structured environment. While we hope this book is accessible to a wide range of readers
and levels of ML expertise, we do assume that readers have taken at least an introductory
ML course or have the equivalent expertise and some basic experience with R. A background
in computer science or statistics is beneficial for understanding the advanced functionality
described in the later chapters of this book, but not required. A comprehensive ML in-
troduction for those new to the field can be found in James et al. (2014). Wickham and
Grolemund (2017) provides a comprehensive introduction to data science in R.

The book is split into the following four parts:

Part I: Fundamentals In this part of the book we will teach you the fundamentals of mlr3.
This will give you a flavor of the building blocks of the mlr3 universe and the basic tools you
will need to tackle most machine learning problems. We recommend that all readers study
these chapters to become familiar with mlr3 terminology, syntax, and style. In Chapter 2 we
will cover the basic classes in mlr3, including Learner (machine learning implementations),
Measure (performance metrics), and Task (machine learning task definitions). Chapter 3 will
take evaluation a step further to include discussions about resampling – robust strategies for
measuring model performance – and benchmarking – experiments for comparing multiple
models.

Part II: Tuning and Feature Selection In this part of the book, we will look at more
advanced methodology that is essential to developing powerful ML models with good pre-
dictive ability. Chapter 4 introduces hyperparameter optimization, which is the process of
tuning model hyperparameters to obtain better model performance. Tuning is implemented
via the mlr3tuning package, which also includes methods for automating complex tuning
processes, including nested resampling. The performance of ML models can be improved
by tuning hyperparameters but also by carefully selecting features. Chapter 6 introduces
feature selection with filters and wrappers implemented in mlr3filters and mlr3fselect.
For readers interested in taking a deep dive into tuning, Chapter 5 discusses advanced tun-

xiii
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ing methods including error handling, multi-objective tuning, and tuning with Hyperband
and Bayesian optimization methods.

Part III: Pipelines and Preprocessing In Part III we introduce mlr3pipelines, which
allows users to implement complex ML workflows easily. In Chapter 7 we will show you
how to build a pipeline out of discrete configurable operations and how to treat complex
pipelines as if they were any other machine learning model. In Chapter 8 we will build
on the previous chapter by introducing non-sequential pipelines, which can have multiple
branches that carry out operations concurrently. We will also demonstrate how to tune
pipelines, including how to tune which operations should be included in the pipeline. Finally,
in Chapter 9 we will put pipelines into practice by demonstrating how to solve common
problems that occur when fitting ML models to messy data.

Part IV: Advanced Topics In the final part of the book, we will look at advanced
methodology and technical details. This part of the book is more theory-heavy in some
sections to help ground the design and implementation decisions. We will begin by looking
at advanced technical details in Chapter 10 that are essential reading for advanced users
who require parallelization, custom error handling, or large databases. Chapter 11 will
build on all preceding chapters to introduce large-scale benchmarking experiments that
compare many models, tasks, and measures; including how to make use of mlr3 extension
packages for loading data, using high-performance computing clusters, and formal statistical
analysis of benchmark experiments. Chapter 12 will discuss different packages that are
compatible with mlr3 to provide model-agnostic interpretability for feature importance
and local explainability of individual predictions. Chapter 13 will then delve into detail on
domain-specific methods that are implemented in our extension packages including survival
analysis, density estimation, spatio-temporal analysis, and more. Readers may choose to
selectively read sections in this chapter depending on your use case (i.e., if you have domain-
specific problems to tackle), or to use these as introductions to new domains to explore.
Finally, Chapter 14 will introduce algorithmic fairness, which includes specialized measures
and methods to identify and reduce algorithmic biases.

Citing this book
This book is the culmination of many years worth of software design, coding, writing, and
editing. It is very important to us that all our contributors are credited appropriately.

Citation details of packages in the mlr3 ecosystem can be found in their respective GitHub
repositories.

When you are citing this book please cite chapters directly; citations can be found at the
end of each chapter. If you need to reference the full book please use:

Bischl, B., Sonabend, R., Kotthoff, L., & Lang, M. (Eds.). (2024).
"Applied Machine Learning Using mlr3 in R". CRC Press. https://mlr3book.mlr-org.com

@book{Bischl2024
title = {Applied Machine Learning Using {m}lr3 in {R}},
editor = {Bernd Bischl and Raphael Sonabend and Lars Kotthoff and Michel Lang},
url = {https://mlr3book.mlr-org.com},
year = {2024},
isbn = {9781032507545},
publisher = {CRC Press}

}

https://mlr3pipelines.mlr-org.com
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Please see the front page of the book website (https://mlr3book.mlr-org.com) for full
licensing details.

We hope you enjoy reading this book.

Bernd, Raphael, Lars, Michel

https://mlr3book.mlr-org.com
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Introduction and Overview
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University of Wyoming

Raphael Sonabend
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Natalie Foss
University of Wyoming

Bernd Bischl
Ludwig-Maximilians-Universität München, and Munich Center for Machine Learning
(MCML)

Welcome to the Machine Learning in R universe. In this book, we will guide you through the
functionality offered by mlr3 step by step. If you want to contribute to our universe, ask any
questions, read documentation, or just chat with the team, head to https://github.com/mlr-
org/mlr3 which has several useful links in the README.

The mlr3 (Lang et al. 2019) package and the wider mlr3 ecosystem provide a generic, object-
oriented, and extensible framework for regression (Section 2.1), classification (Section 2.5),
and other machine learning tasks (Chapter 13) for the R language (R Core Team 2019). On
the most basic level, the unified interface provides functionality to train, test, and evaluate
many machine learning algorithms. You can also take this a step further with hyperparame-
ter optimization, computational pipelines, model interpretation, and much more. mlr3 has
similar overall aims to caret and tidymodels for R, scikit-learn for Python, and MLJ
for Julia. In general, mlr3 is designed to provide more flexibility than other ML frameworks
while still offering easy ways to use advanced functionality. While tidymodels in particular
makes it very easy to perform simple ML tasks, mlr3 is more geared towards advanced ML.

Before we can show you the full power of mlr3, we recommend installing the mlr3verse
package, which will install several, important packages in the mlr3 ecosystem.

install.packages("mlr3verse")

Chapters that were added after the release of the printed version of this book are marked
with a ‘+’.

1

https://github.com/mlr-org/mlr3
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1.1 Installation Guidelines
There are many packages in the mlr3 ecosystem that you may want to use as you
work through this book. All our packages can be installed from GitHub and R-universe1;
the majority (but not all) packages can also be installed from CRAN. We recommend
adding the mlr-org R-universe to your R options so you can install all packages with
install.packages(), without having to worry which package repository it comes from.
To do this, install usethis and run the following:

usethis::edit_r_profile()

In the file that opens add or change the repos argument in options so it looks something
like the code below (you might need to add the full code block below or just edit the existing
options function).

options(repos = c(
mlrorg = "https://mlr-org.r-universe.dev",
CRAN = "https://cloud.r-project.org/"

))

Save the file, restart your R session, and you are ready to go!

If you want the latest development version of any of our packages, run

remotes::install_github("mlr-org/{pkg}")

with {pkg} replaced with the name of the package you want to install. You can see an up-to-
date list of all our extension packages at https://github.com/mlr-org/mlr3/wiki/Extension-
Packages.

1.2 How to Use This Book
You could read this book cover to cover but you may benefit more from dipping in and
out of chapters as suits your needs, we have provided a comprehensive index to help you
find relevant pages and sections. We do recommend reading the first part of the book in its
entirety as this will provide you with a complete overview of our basic infrastructure and
design, which is used throughout our ecosystem.

We have marked sections that are particularly complex with respect to either technical or
methodological detail and could be skipped on a first read with the following information
box:

1R-universe is an alternative package repository to CRAN. The bit of code below tells R to look at both
R-universe and CRAN when trying to install packages. R will always install the latest version of a package.

https://cran.r-project.org/package=usethis
https://github.com/mlr-org/mlr3/wiki/Extension-Packages
https://github.com/mlr-org/mlr3/wiki/Extension-Packages
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This section covers advanced ML or technical details.

Each chapter includes examples, API references, and explanations of methodologies. At the
end of each part of the book we have included exercises for you to test yourself on what
you have learned; you can find the solutions to these exercises at https://mlr3book.mlr-
org.com/solutions.html. We have marked more challenging (and possibly time-consuming)
exercises with an asterisk, ’*’.

If you want more detail about any of the tasks used in this book or links to all the mlr3
dictionaries, please see the appendices in the online version of the book at https://mlr3bo
ok.mlr-org.com/.

Reproducibility

At the start of each chapter we run set.seed(123) and use renv to manage package
versions, you can find our lockfile at https://github.com/mlr-org/mlr3book/blob/main/b
ook/renv.lock.

1.3 mlr3book Code Style
Throughout this book we will use the following code style:

1. We always use = instead of <- for assignment.

2. Class names are in UpperCamelCase

3. Function and method names are in lower_snake_case

4. When referencing functions, we will only include the package prefix (e.g.,
pkg::function) for functions outside the mlr3 universe or when there may
be ambiguity about in which package the function lives. Note you can use
environment(function) to see which namespace a function is loaded from.

5. We denote packages, fields, methods, and functions as follows:

•package (highlighted in the first instance)
•package::function() or function() (see point 4)
•$field for fields (data encapsulated in an R6 class)
•$method() for methods (functions encapsulated in an R6 class)
•Class (for R6 classes primarily, these can be distinguished from packages
by context)

Now let us see this in practice with our first example.

https://mlr3book.mlr-org.com/solutions.html
https://mlr3book.mlr-org.com/solutions.html
https://mlr3book.mlr-org.com/
https://mlr3book.mlr-org.com/
https://cran.r-project.org/package=renv
https://github.com/mlr-org/mlr3book/blob/main/book/renv.lock
https://github.com/mlr-org/mlr3book/blob/main/book/renv.lock
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1.4 mlr3 by Example
The mlr3 universe includes a wide range of tools taking you from basic ML to complex
experiments. To get started, here is an example of the simplest functionality – training a
model and making predictions.

library(mlr3)
task = tsk("penguins")
split = partition(task)
learner = lrn("classif.rpart")

learner$train(task, row_ids = split$train)
learner$model

n= 230

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 230 131 Adelie (0.430435 0.200000 0.369565)
2) flipper_length< 207 142 43 Adelie (0.697183 0.295775 0.007042)
4) bill_length< 42.2 94 1 Adelie (0.989362 0.010638 0.000000) *
5) bill_length>=42.2 48 7 Chinstrap (0.125000 0.854167 0.020833)
10) island=Biscoe,Torgersen 7 1 Adelie (0.857143 0.000000 0.142857) *
11) island=Dream 41 0 Chinstrap (0.000000 1.000000 0.000000) *

3) flipper_length>=207 88 4 Gentoo (0.000000 0.045455 0.954545) *

prediction = learner$predict(task, row_ids = split$test)
prediction

<PredictionClassif> for 114 observations:
row_ids truth response

2 Adelie Adelie
3 Adelie Adelie
12 Adelie Adelie

--- --- ---
340 Chinstrap Gentoo
341 Chinstrap Chinstrap
344 Chinstrap Chinstrap

prediction$score(msr("classif.acc"))

classif.acc
0.9386

In this example, we trained a decision tree on a subset of the penguins dataset, made
predictions on the rest of the data and then evaluated these with the accuracy measure. In
Chapter 2 we will break this down in more detail.

https://www.rdocumentation.org/packages/palmerpenguins/topics/penguins
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The mlr3 interface also lets you run more complicated experiments in just a few lines of
code:

library(mlr3verse)

tasks = tsks(c("breast_cancer", "sonar"))

glrn_rf_tuned = as_learner(ppl("robustify") %>>% auto_tuner(
tnr("grid_search", resolution = 5),
lrn("classif.ranger", num.trees = to_tune(200, 500)),
rsmp("holdout")

))
glrn_rf_tuned$id = "RF"

glrn_stack = as_learner(ppl("robustify") %>>% ppl("stacking",
lrns(c("classif.rpart", "classif.kknn")),
lrn("classif.log_reg")

))
glrn_stack$id = "Stack"

learners = c(glrn_rf_tuned, glrn_stack)
bmr = benchmark(benchmark_grid(tasks, learners, rsmp("cv", folds = 3)))

bmr$aggregate(msr("classif.acc"))

task_id learner_id classif.acc
1: breast_cancer RF 0.9649
2: breast_cancer Stack 0.9342
3: sonar RF 0.7536
4: sonar Stack 0.7246

In this (much more complex!) example we chose two tasks and two learners and used auto-
mated tuning to optimize the number of trees in the random forest learner (Chapter 4), and
a machine learning pipeline that imputes missing data, collapses factor levels, and stacks
models (Chapter 7 and Chapter 8). We also showed basic features like loading learners
(Chapter 2) and choosing resampling strategies for benchmarking (Chapter 3). Finally, we
compared the performance of the models using the mean accuracy with three-fold cross-
validation.

You will learn how to do all this and more in this book.

1.5 The mlr3 Ecosystem
Throughout this book, we often refer to mlr3, which may refer to the single mlr3 base
package but usually refers to all packages in our ecosystem, this should be clear from context.
The mlr3 package provides the base functionality that the rest of the ecosystem depends on
for building more advanced machine learning tools. Figure 1.1 shows the packages in our
ecosystem that extend mlr3 with capabilities for preprocessing, pipelining, visualizations,
additional learners, additional task types, and much more.

https://mlr3.mlr-org.com
https://mlr3.mlr-org.com
https://mlr3.mlr-org.com
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Figure 1.1: Overview of the mlr3 ecosystem, the packages with gray dashed lines are still
in development, all others have a stable interface.



The mlr3 Ecosystem 7

A complete and up-to-date list of extension packages can be found at https://mlr-org.com/
ecosystem.html.

As well as packages within the mlr3 ecosystem, software in the mlr3verse also depends on
the following popular and well-established packages:

• R6: The class system predominantly used in mlr3.
• data.table: High-performance extension of R’s data.frame.
• digest: Cryptographic hash functions.
• uuid: Generation of universally unique identifiers.
• lgr: Configurable logging library.
• mlbench and palmerpenguins: Machine learning datasets.
• future / future.apply / parallelly: For parallelization (Section 10.1).
• evaluate: For capturing output, warnings, and exceptions (Section 10.2).

We build on R6 for object orientation and data.table to store and operate on tabular
data. As both are core to mlr3 we briefly introduce both packages for beginners; in-depth
expertise with these packages is not necessary to work with mlr3.

1.5.1 R6 for Beginners
R6 is one of R’s more recent paradigms for object-oriented programming. If you have expe-
rience with any (class) object-oriented programming then R6 should feel familiar. We focus
on the parts of R6 that you need to know to use mlr3.

Objects are created by constructing an instance of an R6Class variable using the $new()
initialization method. For example, say we have implemented a class called Foo, then foo
= Foo$new(bar = 1) would create a new object of class Foo and set the bar argument
of the constructor to the value 1. In practice, we implement a lot of sugar functionality
(Section 1.6) in mlr3 that make construction and access a bit more convenient.

Some R6 objects may have mutable states that are encapsulated in their fields, which can be
accessed through the dollar, $, operator. Continuing the previous example, we can access the
bar value in the foo object by using foo$bar or we could give it a new value, e.g. foo$bar
= 2. These fields can also be ‘active bindings’, which perform additional computations when
referenced or modified.

In addition to fields, methods allow users to inspect the object’s state, retrieve information,
or perform an action that changes the internal state of the object. For example, in mlr3,
the $train() method of a learner changes the internal state of the learner by building and
storing a model. Methods that modify the internal state of an object often return the object
itself. Other methods may return a new R6 object. In both cases, it is possible to ‘chain’
methods by calling one immediately after the other using the $-operator; this is similar
to the %>%-operator used in tidyverse packages. For example, Foo$bar()$hello_world()
would run the $bar() method of the object Foo and then the $hello_world() method of
the object returned by $bar() (which may be Foo itself).

Fields and methods can be public or private. The public fields and methods define the API
to interact with the object. In mlr3, you can safely ignore private methods unless you are
looking to extend our universe by adding a new class (Chapter 10).

Finally, R6 objects are environments, and as such have reference semantics. This means
that, for example, foo2 = foo does not create a new variable called foo2 that is a copy of
foo. Instead, it creates a variable called foo2 that references foo, and so setting foo$bar

https://mlr-org.com/ecosystem.html
https://mlr-org.com/ecosystem.html
https://cran.r-project.org/package=R6
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=digest
https://cran.r-project.org/package=uuid
https://cran.r-project.org/package=lgr
https://cran.r-project.org/package=mlbench
https://cran.r-project.org/package=palmerpenguins
https://cran.r-project.org/package=future
https://cran.r-project.org/package=future.apply
https://cran.r-project.org/package=parallelly
https://cran.r-project.org/package=evaluate
https://cran.r-project.org/package=R6
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=R6
https://www.rdocumentation.org/packages/R6/topics/R6Class
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= 3 will also change foo2$bar to 3 and vice versa. To copy an object, use the $clone(deep
= TRUE) method, so to copy foo: foo2 = foo$clone(deep = TRUE)$clone() .

For a longer introduction, we recommend the R6 vignettes found at https://r6.r-lib.org/;
more detail can be found in https://adv-r.hadley.nz/r6.html.

1.5.2 data.table for Beginners
The package data.table implements data.table(), which is a popular alternative to R’s
data.frame(). We use data.table because it is blazingly fast and scales well to bigger
data.

As with data.frame, data.tables can be constructed with data.table() or
as.data.table():

library(data.table)
# converting a matrix with as.data.table
as.data.table(matrix(runif(4), 2, 2))

V1 V2
1: 0.2989 0.5856
2: 0.1594 0.1488

# using data.table
dt = data.table(x = 1:6, y = rep(letters[1:3], each = 2))
dt

x y
1: 1 a
2: 2 a
3: 3 b
4: 4 b
5: 5 c
6: 6 c

data.tables can be used much like data.frames, but they provide additional functionality
that makes complex operations easier. For example, data can be summarized by groups with
a by argument in the [ operator and they can be modified in-place with the := operator.

# mean of x column in groups given by y
dt[, mean(x), by = "y"]

y V1
1: a 1.5
2: b 3.5
3: c 5.5

# adding a new column with :=
dt[, z := x * 3]
dt

x y z

https://r6.r-lib.org/
https://adv-r.hadley.nz/r6.html
https://cran.r-project.org/package=data.table
https://www.rdocumentation.org/packages/data.table/topics/data.table-package
https://cran.r-project.org/package=data.table
https://www.rdocumentation.org/packages/data.table/topics/data.table-package
https://www.rdocumentation.org/packages/data.table/topics/as.data.table
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1: 1 a 3
2: 2 a 6
3: 3 b 9
4: 4 b 12
5: 5 c 15
6: 6 c 18

Finally data.table also uses reference semantics so you will need to use copy() to clone
a data.table. For an in-depth introduction, we recommend the vignette “Introduction to
Data.table” (2023).

1.6 Essential mlr3 Utilities
mlr3 includes a few important utilities that are essential to simplifying code in our ecosys-
tem.

Sugar Functions
Most objects in mlr3 can be created through convenience functions called helper functions
or sugar functions. They provide shortcuts for common code idioms, reducing the amount
of code a user has to write. For example lrn("regr.rpart") returns the learner without
having to explicitly create a new R6 object. We heavily use sugar functions throughout
this book and provide the equivalent “full form” for complete detail at the end of each
chapter. The sugar functions are designed to cover the majority of use cases for most users,
knowledge about the full R6 backend is only required if you want to build custom objects
or extensions.

Many object names in mlr3 are standardized according to the convention:
mlr_<type>_<key>, where <type> will be tasks, learners, measures, and other
classes that will be covered in the book, and <key> refers to the ID of the object. To
simplify the process of constructing objects, you only need to know the object key
and the sugar function for constructing the type. For example: mlr_tasks_mtcars
becomes tsk("mtcars");mlr_learners_regr.rpart becomes lrn("regr.rpart"); and
mlr_measures_regr.mse becomes msr("regr.mse"). Throughout this book, we will refer
to all objects using this abbreviated form.

Dictionaries
mlr3 uses dictionaries to store R6 classes, which associate keys (unique identifiers) with
objects (R6 objects). Values in dictionaries are often accessed through sugar functions
that retrieve objects from the relevant dictionary, for example lrn("regr.rpart") is a
wrapper around mlr_learners$get("regr.rpart") and is thus a simpler way to load a
decision tree learner from mlr_learners. We use dictionaries to group large collections
of relevant objects so they can be listed and retrieved easily. For example, you can see
an overview of available learners (that are in loaded packages) and their properties with
as.data.table(mlr_learners) or by calling the sugar function without any arguments,
e.g. lrn().

https://www.rdocumentation.org/packages/data.table/topics/copy
https://mlr3.mlr-org.com/reference/mlr_learners.html
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mlr3viz
mlr3viz includes all plotting functionality in mlr3 and uses ggplot2 under the hood.
We use theme_minimal() in all our plots to unify our aesthetic, but as with all ggplot
outputs, users can fully customize this. mlr3viz extends fortify and autoplot for use
with common mlr3 outputs including Prediction, Learner, and BenchmarkResult ob-
jects (which we will introduce and cover in the next chapters). We will cover major plot
types throughout the book. The best way to learn about mlr3viz is through experimenta-
tion; load the package and see what happens when you run autoplot on an mlr3 object.
Plot types are documented in the respective manual page that can be accessed through
?autoplot.<class>, for example, you can find different types of plots for regression tasks
by running ?autoplot.TaskRegr.

1.7 Design Principles

This section covers advanced ML or technical details.

Learning from over a decade of design and adaptation from mlr to mlr3, we now follow
these design principles in the mlr3 ecosystem:

• Object-oriented programming. We embrace R6 for a clean, object-oriented design,
object state changes, and reference semantics. This means that the state of common
objects (e.g. tasks (Section 2.1) and learners (Section 2.2)) is encapsulated within the
object, for example, to keep track of whether a model has been trained, without the user
having to worry about this. We also use inheritance to specialize objects, e.g. all learners
are derived from a common base class that provides basic functionality.

• Tabular data. Embrace data.table for its top-notch computational performance as well
as tabular data as a structure that can be easily processed further.

• Unified tabular input and output data formats. This considerably simplifies the
API and allows easy selection and “split-apply-combine” (aggregation) operations. We
combine data.table and R6 to place references to non-atomic and compound objects in
tables and make heavy use of list columns.

• Defensive programming and type safety. All user input is checked with checkmate
(Lang 2017). We use data.table, which has behavior that is more consistent than several
base R methods (e.g., indexing data.frames simplifies the result when the drop argument
is omitted). And we have extensive unit tests!

• Light on dependencies. One of the main maintenance burdens for mlr was to keep
up with changing learner interfaces and behavior of the many packages it depended on.
We require far fewer packages in mlr3, which makes installation and maintenance easier.
We still provide the same functionality, but it is split into more packages that have fewer
dependencies individually.

• Separation of computation and presentation. Most packages of the mlr3 ecosystem
focus on processing and transforming data, applying ML algorithms, and computing re-
sults. Our core packages do not provide visualizations because their dependencies would
make installation unnecessarily complex, especially on headless servers (i.e., computers
without a monitor where graphical libraries are not installed). Hence, visualizations of
data and results are provided in mlr3viz.

https://mlr3viz.mlr-org.com
https://cran.r-project.org/package=ggplot2
https://www.rdocumentation.org/packages/ggplot2/topics/theme_minimal
https://mlr3viz.mlr-org.com
https://mlr3.mlr-org.com
https://mlr3.mlr-org.com/reference/Prediction.html
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/BenchmarkResult.html
https://mlr3viz.mlr-org.com
https://cran.r-project.org/package=mlr
https://mlr3.mlr-org.com
https://mlr3.mlr-org.com
https://cran.r-project.org/package=R6
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=checkmate
https://cran.r-project.org/package=mlr
https://mlr3.mlr-org.com
https://mlr3.mlr-org.com
https://mlr3viz.mlr-org.com
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In this chapter, we will introduce the mlr3 objects and corresponding R6 classes that imple-
ment the essential building blocks of machine learning. These building blocks include the
data (and the methods for creating training and test sets), the machine learning algorithm
(and its training and prediction process), the configuration of a machine learning algorithm
through its hyperparameters, and evaluation measures to assess the quality of predictions.

In the simplest definition, machine learning (ML) is the process of learning models of re-
lationships from data. Machine

Learn-
ing/Supervised
Learning

Supervised learning is a subfield of ML in which datasets consist
of labeled observations, which means that each data point consists of features, which are
variables to make predictions from, and a target, which is the quantity that we are try-
ing to predict. For example, predicting a car’s miles per gallon (target) based on the car’s
properties (features) such as horsepower and the number of gears is a supervised learning
problem, which we will return to several times in this book. In mlr3, we refer to datasets,
and their associated metadata as tasks (Section 2.1). The term ‘task’ is used to refer to the
prediction problem that we are trying to solve. Tasks are defined by the features used for
prediction and the targets to predict, so there can be multiple tasks associated with any
given dataset. For example, predicting miles per gallon (mpg) from horsepower is one task,
predicting horsepower from mpg is another task, and predicting the number of gears from
the car’s model is yet another task.

Supervised learning can be further divided into regression Regression– which is the prediction of nu-
meric target values, e.g. predicting a car’s mpg – and classification Classifica-

tion
– which is the prediction

of categorical values/labels, e.g., predicting a car’s model. Chapter 13 also discusses other
tasks, including cost-sensitive classification and unsupervised learning. For any supervised
learning task, the goal is to build a model that captures the relationship between the fea-
tures and target, often with the goal of training the model to learn relationships about the
data so it can make predictions for new and previously unseen data. A model Modelis formally a
mapping from a feature vector to a prediction. A prediction can take many forms depending
on the task; for example, in classification this can be a predicted label, or a set of predicted
probabilities or scores. Models are induced by passing training data to machine learning
algorithms, such as decision trees, support vector machines, neural networks, and many
more. Machine learning algorithms are called learners Learnersin mlr3 (Section 2.2) as, given data,
they learn models. Each learner has a parameterized space that potential models are drawn
from and during the training process, these parameters are fitted to best match the data.
For example, the parameters could be the coefficients used for individual features when
training a linear regression model. During training, most machine learning algorithms are
‘fitted’/‘trained’ by optimizing a loss-function that quantifies the mismatch between ground
truth target values in the training data and the predictions of the model.

13

https://mlr3.mlr-org.com
https://cran.r-project.org/package=R6
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For a model to be most useful, it should generalize beyond the training data to make
‘good’ predictions (Section 2.2.2) on new and previously ‘unseen’ (by the model) data. The
simplest way to test this, is to split data into training data and test dataTrain/Test

Data
– where the model is

trained on the training data and then the separate test data is used to evaluate models in an
unbiased way by assessing to what extent the model has learned the true relationships that
underlie the data (Chapter 3). This evaluation procedure estimates a model’s generalization
errorGeneraliza-

tion Error
, i.e., how well we expect the model to perform in general. There are many ways to

evaluate models and to split data for estimating generalization error (Section 3.2).

This brief overview of ML provides the basic knowledge required to use mlr3 and is summa-
rized in Figure 2.1. In the rest of this book, we will provide introductions to methodology
when relevant. For texts about ML, including detailed methodology and underpinnings of
different algorithms, we recommend Hastie, Friedman, and Tibshirani (2001), James et al.
(2014), and Bishop (2006).

In the next few sections we will look at the building blocks of mlr3 using regression as an
example, we will then consider how to extend this to classification in Section 2.5.

Figure 2.1: General overview of the machine learning process.

2.1 Tasks
Tasks are objects that contain the (usually tabular) data and additional metadata that
define a machine learning problem. The metadata contain, for example, the name of the
target feature for supervised machine learning problems. This information is extracted au-
tomatically when required, so the user does not have to specify the prediction target every
time a model is trained.

2.1.1 Constructing Tasks
mlr3 includes a few predefined machine learning tasks in the mlr_tasksmlr_tasks Dictionary.

mlr_tasks

<DictionaryTask> with 22 stored values
Keys: ames_housing, bike_sharing, boston_housing, breast_cancer,
california_housing, german_credit, ilpd, iris, kc_housing,

https://mlr3.mlr-org.com/reference/mlr_tasks.html
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moneyball, mtcars, optdigits, penguins, penguins_simple, pima,
ruspini, sonar, spam, titanic, usarrests, wine, zoo

To get a task from the dictionary, use the tsk() tsk()function and assign the return value to a
new variable. Below we retrieve tsk("mtcars"), which uses the mtcars dataset:

tsk_mtcars = tsk("mtcars")
tsk_mtcars

<TaskRegr:mtcars> (32 x 11): Motor Trends
* Target: mpg
* Properties: -
* Features (10):
- dbl (10): am, carb, cyl, disp, drat, gear, hp, qsec, vs, wt

Running tsk() without any arguments will list all the tasks in the dictionary, this also
works for all other sugar constructors that you will encounter throughout the book.

Help Pages

Usually in R, the help pages of functions can be queried with ?. The same is true
of R6 classes, so if you want to find the help page of the mtcars task you could use
?mlr_tasks_mtcars. We have also added a $help() method to many of our classes,
which allows you to access the help page from any instance of that class, for example:
tsk("mtcars")$help().

To create your own regression task, you will need to construct a new instance of TaskRegr TaskRegr.
The simplest way to do this is with the function as_task_regr()

as_task_regr()
to convert a data.frame

type object to a regression task, specifying the target feature by passing this to the target
argument. By example, we will ignore that mtcars is already available as a predefined task
in mlr3. In the code below we load the datasets::mtcars dataset, subset the data to only
include columns "mpg", "cyl", "disp", print the modified data’s properties, and then set
up a regression task called "cars" (id = "cars") in which we will try to predict miles per
gallon (target = "mpg") from the number of cylinders ("cyl") and displacement ("disp"):

data("mtcars", package = "datasets")
mtcars_subset = subset(mtcars, select = c("mpg", "cyl", "disp"))
str(mtcars_subset)

'data.frame': 32 obs. of 3 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
$ disp: num 160 160 108 258 360 ...

tsk_mtcars = as_task_regr(mtcars_subset, target = "mpg", id = "cars")

The data can be in any tabular format, e.g. a data.frame(), data.table(), or tibble().
The target argument specifies the prediction target column. The id argument is optional
and specifies an identifier for the task that is used in plots and summaries; if omitted the
variable name of the data will be used as the id.

https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://www.rdocumentation.org/packages/datasets/topics/mtcars
https://mlr3.mlr-org.com/reference/TaskRegr.html
https://mlr3.mlr-org.com/reference/as_task_regr.html
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UTF8 Column Names

As many machine learning models do not work properly with arbitrary UTF8
names, mlr3 defaults to throwing an error if any of the column names passed to
as_task_regr() (and other task constructors) contain a non-ASCII character or
do not comply with R’s variable naming scheme. Therefore, we recommend con-
verting names with make.names() if possible. You can bypass this check by setting
options(mlr3.allow_utf8_names = TRUE) (but do not be surprised if errors occur
later, especially when passing objects to other packages).

Printing a task provides a summary and in this case, we can see the task has 32 observa-
tions and 3 columns (32 x 3), of which mpg is the target, there are no special properties
(Properties: -), and there are 2 features stored in double-precision floating point format.

tsk_mtcars

<TaskRegr:cars> (32 x 3)
* Target: mpg
* Properties: -
* Features (2):
- dbl (2): cyl, disp

We can plot the task using the mlr3viz package, which gives a graphical summary of the
distribution of the target and feature values:

library(mlr3viz)
autoplot(tsk_mtcars, type = "pairs")

2.1.2 Retrieving Data
We have looked at how to create tasks to store data and metadata, now we will look at how
to retrieve the stored data.

Various fields can be used to retrieve metadata about a task. The dimensions, for example,
can be retrieved using $nrow and $ncol:

c(tsk_mtcars$nrow, tsk_mtcars$ncol)

[1] 32 3

The names of the feature and target columns are stored in the $feature_names and
$target_names slots, respectively.

c(Features = tsk_mtcars$feature_names,
Target = tsk_mtcars$target_names)

Features1 Features2 Target
"cyl" "disp" "mpg"

The columns of a task have unique character-valued names and the rows are identified by
unique natural numbers, called row IDs. They can be accessed through the $row_ids field:

https://mlr3.mlr-org.com/reference/as_task_regr.html
https://www.rdocumentation.org/packages/base/topics/make.names
https://mlr3viz.mlr-org.com
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head(tsk_mtcars$row_ids)

[1] 1 2 3 4 5 6

Row IDs are not used as features when training or predicting but are metadata that allow
access to individual observations. Note that row IDs are not the same as row numbers. This
is best demonstrated by example, below we create a regression task from random data, print
the original row IDs, which correspond to row numbers 1-5, then we filter three rows (we will
return to this method just below) and print the new row IDs, which no longer correspond
to the row numbers.

task = as_task_regr(data.frame(x = runif(5), y = runif(5)),
target = "y")

task$row_ids

[1] 1 2 3 4 5

task$filter(c(4, 1, 3))
task$row_ids

[1] 1 3 4

This design decision allows tasks and learners to transparently operate on real database
management systems, where primary keys are required to be unique, but not necessarily
consecutive. See Section 10.4 for more information on using databases as data backends for
tasks

The data contained in a task can be accessed through $data(), which returns a data.table
object. This method has optional rows and cols arguments to specify subsets of the data
to retrieve.

# retrieve all data
tsk_mtcars$data()

mpg cyl disp
1: 21.0 6 160.0
2: 21.0 6 160.0
3: 22.8 4 108.0
4: 21.4 6 258.0
5: 18.7 8 360.0
---
28: 30.4 4 95.1
29: 15.8 8 351.0
30: 19.7 6 145.0
31: 15.0 8 301.0
32: 21.4 4 121.0

# retrieve data for rows with IDs 1, 5, and 10 and all feature columns
tsk_mtcars$data(rows = c(1, 5, 10), cols = tsk_mtcars$feature_names)

cyl disp

https://www.rdocumentation.org/packages/data.table/topics/data.table-package
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1: 6 160.0
2: 8 360.0
3: 6 167.6

Accessing Rows by Number

You can work with row numbers instead of row IDs by using the $row_ids field to
extract the row ID corresponding to a given row number:

# select the 2nd row of the task by extracting the second row_id:
tsk_mtcars$data(rows = task$row_ids[2])

You can always use ‘standard’ R methods to extract summary data from a task, for example,
to summarize the underlying data:

summary(as.data.table(tsk_mtcars))

mpg cyl disp
Min. :10.4 Min. :4.00 Min. : 71.1
1st Qu.:15.4 1st Qu.:4.00 1st Qu.:120.8
Median :19.2 Median :6.00 Median :196.3
Mean :20.1 Mean :6.19 Mean :230.7
3rd Qu.:22.8 3rd Qu.:8.00 3rd Qu.:326.0
Max. :33.9 Max. :8.00 Max. :472.0

2.1.3 Task Mutators
After a task has been created, you may want to perform operations on the task such as
filtering down to subsets of rows and columns, which is often useful for manually creating
train and test splits or to fit models on a subset of given features. Above we saw how to
access subsets of the underlying dataset using $data(), however, this will not change the
underlying task. Therefore, we provide mutatorsMutators , which modify the given Task in place,
which can be seen in the examples below.

Subsetting by features (columns) is possible with $select() with the desired feature names
passed as a character vector and subsetting by observations (rows) is performed with
$filter() by passing the row IDs as a numeric vector.

tsk_mtcars_small = tsk("mtcars") # initialize with the full task
tsk_mtcars_small$select("cyl") # keep only one feature
tsk_mtcars_small$filter(2:3) # keep only these rows
tsk_mtcars_small$data()

mpg cyl
1: 21.0 6
2: 22.8 4

As R6 uses reference semantics (Section 1.5.1), you need to use $clone() if you want to
modify a task while keeping the original object intact.
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# the wrong way
tsk_mtcars = tsk("mtcars")
tsk_mtcars_wrong = tsk_mtcars
tsk_mtcars_wrong$filter(1:2)
# original data affected
tsk_mtcars$head()

mpg am carb cyl disp drat gear hp qsec vs wt
1: 21 1 4 6 160 3.9 4 110 16.46 0 2.620
2: 21 1 4 6 160 3.9 4 110 17.02 0 2.875

# the right way
tsk_mtcars = tsk("mtcars")
tsk_mtcars_right = tsk_mtcars$clone()
tsk_mtcars_right$filter(1:2)
# original data unaffected
tsk_mtcars$head()

mpg am carb cyl disp drat gear hp qsec vs wt
1: 21.0 1 4 6 160 3.90 4 110 16.46 0 2.620
2: 21.0 1 4 6 160 3.90 4 110 17.02 0 2.875
3: 22.8 1 1 4 108 3.85 4 93 18.61 1 2.320
4: 21.4 0 1 6 258 3.08 3 110 19.44 1 3.215
5: 18.7 0 2 8 360 3.15 3 175 17.02 0 3.440
6: 18.1 0 1 6 225 2.76 3 105 20.22 1 3.460

To add extra rows and columns to a task, you can use $rbind() and $cbind() respectively:

tsk_mtcars_small$cbind( # add another column
data.frame(disp = c(150, 160))

)
tsk_mtcars_small$rbind( # add another row
data.frame(mpg = 23, cyl = 5, disp = 170)

)
tsk_mtcars_small$data()

mpg cyl disp
1: 21.0 6 150
2: 22.8 4 160
3: 23.0 5 170

2.2 Learners
Objects of class Learner Learnerprovide a unified interface to many popular machine learning
algorithms in R. The mlr_learners

mlr_learners
dictionary contains all the learners available in mlr3.

We will discuss the available learners in Section 2.7; for now, we will just use a regression

https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/mlr_learners.html
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tree learner as an example to discuss the Learner interface. As with tasks, you can access
learners from the dictionary with a single sugar function, in this case, lrn()lrn() .

lrn("regr.rpart")

<LearnerRegrRpart:regr.rpart>: Regression Tree
* Model: -
* Parameters: xval=0
* Packages: mlr3, rpart
* Predict Types: [response]
* Feature Types: logical, integer, numeric, factor, ordered
* Properties: importance, missings, selected_features, weights

All Learner objects include the following metadata, which can be seen in the output above:

• $feature_types: the type of features the learner can handle.
• $packages: the packages required to be installed to use the learner.
• $properties: the properties of the learner. For example, the “missings” properties means

a model can handle missing data, and “importance” means it can compute the relative
importance of each feature.

• $predict_types: the types of prediction that the model can make (Section 2.2.2).
• $param_set: the set of available hyperparameters (Section 2.2.3).

To run a machine learning experiment, learners pass through two stages (Figure 2.2):

• TrainingTraining : A training Task is passed to the learner’s $train() function which trains and
stores a model, i.e., the learned relationship of the features to the target.

• PredictingPredicting : New data, potentially a different partition of the original dataset, is passed to
the $predict() method of the trained learner to predict the target values.

2.2.1 Training
In the simplest use case, models are trained by passing a task to a learner with the $train()$train()
method:

# load mtcars task
tsk_mtcars = tsk("mtcars")
# load a regression tree
lrn_rpart = lrn("regr.rpart")
# pass the task to the learner via $train()
lrn_rpart$train(tsk_mtcars)

After training, the fitted model is stored in the $model$model field for future inspection and
prediction:

# inspect the trained model
lrn_rpart$model

n= 32

node), split, n, deviance, yval
* denotes terminal node

https://mlr3.mlr-org.com/reference/mlr_sugar.html
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Figure 2.2: Overview of the different stages of a learner. Top – data (features and a target)
are passed to an (untrained) learner. Bottom – new data are passed to the trained model
which makes predictions for the ‘missing’ target column.

1) root 32 1126.00 20.09
2) cyl>=5 21 198.50 16.65

4) hp>=192.5 7 28.83 13.41 *
5) hp< 192.5 14 59.87 18.26 *

3) cyl< 5 11 203.40 26.66 *

We see that the regression tree has identified features in the task that are predictive of the
target (mpg) and used them to partition observations. The textual representation of the
model depends on the type of learner. For more information on any model see the learner
help page, which can be accessed in the same way as tasks with the help() field, e.g.,
lrn_rpart$help().

2.2.1.1 Partitioning Data

When assessing the quality of a model’s predictions, you will likely want to partition your
dataset to get a fair and unbiased estimate of a model’s generalization error. In Chapter 3
we will look at resampling and benchmark experiments, which will go into more detail about
performance estimation but for now, we will just discuss the simplest method of splitting
data using the partition() partition()function. This function creates index sets that randomly split
the given task into two disjoint sets: a training set (67% of the total data by default) and
a test set (the remaining 33% of the total data not in the training set).

https://mlr3.mlr-org.com/reference/partition.html
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splits = partition(tsk_mtcars)
splits

$train
[1] 1 3 4 5 7 8 9 10 11 12 14 19 20 21 22 24 25 26 27 28 31

$test
[1] 2 6 13 15 16 17 18 23 29 30 32

$validation
integer(0)

When training we will tell the model to only use the training data by passing the row IDs
from partition to the row_ids argument of $train():

lrn_rpart$train(tsk_mtcars, row_ids = splits$train)

Now we can use our trained learner to make predictions on new data.

2.2.2 Predicting
Predicting from trained models is as simple as passing your data as a Task to the $predict()$predict()
method of the trained Learner.

Carrying straight on from our last example, we will call the $predict() method of our
trained learner and again will use the row_ids argument, but this time to pass the IDs of
our test set:

prediction = lrn_rpart$predict(tsk_mtcars, row_ids = splits$test)

The $predict() method returns an object inheriting from PredictionPrediction , in this case
PredictionRegr

PredictionRegr
as this is a regression task.

prediction

<PredictionRegr> for 11 observations:
row_ids truth response

2 21.0 17.25
6 18.1 17.25
13 17.3 17.25

--- --- ---
29 15.8 17.25
30 19.7 17.25
32 21.4 26.61

The row_ids column corresponds to the row IDs of the predicted observations. The truth
column contains the ground truth data if available, which the object extracts from the task,
in this case: tsk_mtcars$truth(splits$test). Finally, the response column contains
the values predicted by the model. The Prediction object can easily be converted into a
data.table or data.frame using as.data.table()/as.data.frame() respectively.

https://mlr3.mlr-org.com/reference/Prediction.html
https://mlr3.mlr-org.com/reference/PredictionRegr.html
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All data in the above columns can be accessed directly, for example, to get the first two
predicted responses:

prediction$response[1:2]

[1] 17.25 17.25

Similarly to plotting Tasks, mlr3viz provides an autoplot() method for Prediction ob-
jects.

library(mlr3viz)
prediction = lrn_rpart$predict(tsk_mtcars, splits$test)
autoplot(prediction)
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Figure 2.3: Comparing predicted and ground truth values for the mtcars dataset.

In the examples above we made predictions by passing a task to $predict(). However, if you
would rather pass a data.frame type object directly, then you can use $predict_newdata().
Note, the truth column values are all NA, as we did not include a target column in the
generated data.

mtcars_new = data.table(cyl = c(5, 6), disp = c(100, 120),
hp = c(100, 150), drat = c(4, 3.9), wt = c(3.8, 4.1),
qsec = c(18, 19.5), vs = c(1, 0), am = c(1, 1),
gear = c(6, 4), carb = c(3, 5))

prediction = lrn_rpart$predict_newdata(mtcars_new)
prediction

<PredictionRegr> for 2 observations:
row_ids truth response

1 NA 17.25
2 NA 17.25

Changing the Prediction Type

While predicting a single numeric quantity is the most common prediction type in regression,
it is not the only prediction type. Several regression models can also predict standard errors.

https://mlr3viz.mlr-org.com
https://www.rdocumentation.org/packages/ggplot2/topics/autoplot
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To predict this, the $predict_type field of a LearnerRegrmust be changed from “response”
(the default) to "se" before training. The "rpart" learner we used above does not support
predicting standard errors, so in the example below we will use a linear regression model
(lrn("regr.lm")).

library(mlr3learners)
lrn_lm = lrn("regr.lm", predict_type = "se")
lrn_lm$train(tsk_mtcars, splits$train)
lrn_lm$predict(tsk_mtcars, splits$test)

<PredictionRegr> for 11 observations:
row_ids truth response se

2 21.0 20.79 2.089
6 18.1 20.01 1.739
13 17.3 15.52 1.386

--- --- --- ---
29 15.8 23.79 3.839
30 19.7 18.93 2.340
32 21.4 22.97 2.518

Now the output includes an se column as desired. In Section 2.5.3 we will see prediction
types playing an even bigger role in the context of classification.

Having covered the unified train/predict interface, we can now look at how to use hyperpa-
rameters to configure these methods for individual algorithms.

2.2.3 Hyperparameters
Learners encapsulate a machine learning algorithm and its hyperparameters, which affect
how the algorithm is run and can be set by the user. Hyperparameters may affect how a
model is trained or how it makes predictions and deciding how to set hyperparameters can
require expert knowledge. Hyperparameters can be optimized automatically (Chapter 4),
but in this chapter we will focus on how to set them manually.

2.2.3.1 Paradox and Parameter Sets

We will continue our running example with a regression tree learner. To access the hyper-
parameters in the decision tree, we use $param_set$param_set :

lrn_rpart$param_set

<ParamSet(10)>
id class lower upper nlevels default value

1: cp ParamDbl 0 1 Inf 0.01 [NULL]
2: keep_model ParamLgl NA NA 2 FALSE [NULL]
3: maxcompete ParamInt 0 Inf Inf 4 [NULL]
4: maxdepth ParamInt 1 30 30 30 [NULL]
5: maxsurrogate ParamInt 0 Inf Inf 5 [NULL]
6: minbucket ParamInt 1 Inf Inf <NoDefault[0]> [NULL]
7: minsplit ParamInt 1 Inf Inf 20 [NULL]
8: surrogatestyle ParamInt 0 1 2 0 [NULL]
9: usesurrogate ParamInt 0 2 3 2 [NULL]

https://mlr3.mlr-org.com/reference/LearnerRegr.html
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10: xval ParamInt 0 Inf Inf 10 0

The output above is a ParamSet ParamSetobject, supplied by the paradox package. These objects
provide information on hyperparameters including their name (id), data type (class),
technically valid ranges for hyperparameter values (lower, upper), the number of levels
possible if the data type is categorical (nlevels), the default value from the underlying
package (default), and finally the set value (value). The second column references classes
defined in paradox that determine the class of the parameter and the possible values it can
take. Table 2.1 lists the possible hyperparameter types, all of which inherit from Domain.

Table 2.1: Hyperparameter classes and the type of hyperparameter they represent.

Hyperparameter Class Hyperparameter Type
ParamDbl" Real-valued (numeric)
ParamInt" Integer
ParamFct" Categorical (factor)
ParamLgl" Logical / Boolean
ParamUty" Untyped

In our decision tree example, we can infer from the ParamSet output that:

• cp must be a “double” (ParamDbl) taking values between 0 (lower) and 1 (upper) with
a default of 0.01 (default).

• keep_model must be a “logical” (ParamLgl) taking values TRUE or FALSE with default
FALSE

• xval must be an “integer” (ParamInt) taking values between 0 and Inf with a default of
10 and has a set value of 0.

In rare cases (we try to minimize it as much as possible), hyperparameters are initialized to
values which deviate from the default in the underlying package. When this happens, the
reason will always be given in the learner help page. In the case of lrn("regr.rpart"), the
xval hyperparameter is initialized to 0 because xval controls internal cross-validations and
if a user accidentally leaves this at the default 10, model training can take an unnecessarily
long time.

2.2.3.2 Getting and Setting Hyperparameter Values

Now we have looked at how hyperparameter sets are stored, we can think about getting and
setting them. Returning to our decision tree, say we are interested in growing a tree with
depth 1, also known as a “decision stump”, where data is split only once into two terminal
nodes. From the parameter set output, we know that the maxdepth parameter has a default
of 30 and that it takes integer values.

There are a few different ways we could change this hyperparameter. The simplest way is
during construction of the learner by passing the hyperparameter name and new value to
lrn():

lrn_rpart = lrn("regr.rpart", maxdepth = 1)

We can get a list of non-default hyperparameters (i.e., those that have been set) by using
$param_set$values:

https://paradox.mlr-org.com/reference/ParamSet.html
https://paradox.mlr-org.com
https://paradox.mlr-org.com
https://paradox.mlr-org.com/reference/Domain.html
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lrn_rpart$param_set$values

$maxdepth
[1] 1

$xval
[1] 0

Now we can see that maxdepth = 1 (as we discussed above xval = 0 is changed during
construction) and the learned regression tree reflects this:

lrn_rpart$train(tsk("mtcars"))$model

n= 32

node), split, n, deviance, yval
* denotes terminal node

1) root 32 1126.0 20.09
2) cyl>=5 21 198.5 16.65 *
3) cyl< 5 11 203.4 26.66 *

The $values field simply returns a list of set hyperparameters, so another way to update
hyperparameters is by updating an element in the list:

lrn_rpart$param_set$values$maxdepth = 2
lrn_rpart$param_set$values

$maxdepth
[1] 2

$xval
[1] 0

# now with depth 2
lrn_rpart$train(tsk("mtcars"))$model

n= 32

node), split, n, deviance, yval
* denotes terminal node

1) root 32 1126.00 20.09
2) cyl>=5 21 198.50 16.65

4) hp>=192.5 7 28.83 13.41 *
5) hp< 192.5 14 59.87 18.26 *

3) cyl< 5 11 203.40 26.66 *

To set multiple values at once we recommend either setting these during construction or
using $set_values()

$set_values()
, which updates the given hyperparameters (argument names) with

the respective values.
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lrn_rpart = lrn("regr.rpart", maxdepth = 3, xval = 1)
lrn_rpart$param_set$values

$maxdepth
[1] 3

$xval
[1] 1

# or with set_values
lrn_rpart$param_set$set_values(xval = 2, cp = 0.5)
lrn_rpart$param_set$values

$cp
[1] 0.5

$maxdepth
[1] 3

$xval
[1] 2

Setting Hyperparameters Using a list

As lrn_rpart$param_set$values returns a list, some users may be tempted to set
hyperparameters by passing a new list to $values – this would work but we do not
recommend it. This is because passing a list will wipe any existing hyperparameter
values if they are not included in the list. For example:

# set xval and cp
lrn_rpart_params = lrn("regr.rpart", xval = 0, cp = 1)
# passing maxdepth through a list, removing all other values
lrn_rpart_params$param_set$values = list(maxdepth = 1)
# we have removed xval and cp by mistake
lrn_rpart_params$param_set$values

$maxdepth
[1] 1

# now with set_values
lrn_rpart_params = lrn("regr.rpart", xval = 0, cp = 1)
lrn_rpart_params$param_set$set_values(maxdepth = 1)
lrn_rpart_params$param_set$values

$cp
[1] 1

$maxdepth
[1] 1
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$xval
[1] 0

Whichever method you choose, all have safety checks to ensure your new values fall within
the allowed parameter range:

lrn("regr.rpart", cp = 2, maxdepth = 2)

Error in self$assert(xs, sanitize = TRUE): Assertion on 'xs' failed: cp: Element 1 is not <= 1.

2.2.3.3 Hyperparameter Dependencies

This section covers advanced ML or technical details.

More complex hyperparameter spaces may include dependencies, which occur when setting
a hyperparameter is conditional on the value of another hyperparameter; this is most im-
portant in the context of model tuning (Chapter 4). One such example is a support vector
machine (lrn("regr.svm")). The field $deps returns a data.table, which lists the hyper-
parameter dependencies in the Learner. For example we can see that the cost (id-column)
parameter is dependent on the type (on-column) parameter.

lrn("regr.svm")$param_set$deps

id on cond
1: coef0 kernel <Condition:CondAnyOf>
2: cost type <Condition:CondAnyOf>
3: degree kernel <Condition:CondEqual>
4: epsilon type <Condition:CondEqual>
5: gamma kernel <Condition:CondAnyOf>
6: nu type <Condition:CondEqual>

The cond column tells us what the condition is, which will either mean that id can be set
if on equals a single value (CondEqual) or any value in the listed set (CondAnyOf).

lrn("regr.svm")$param_set$deps[[1, "cond"]]

CondAnyOf: x %in% {polynomial, sigmoid}

lrn("regr.svm")$param_set$deps[[3, "cond"]]

CondEqual: x == polynomial

This tells us that the parameter cost should only be set if the type parameter is one of
"eps-regression" or "nu-regression", and degree should only be set if kernel is equal
to "polynomial".

The Learner will error if dependent hyperparameters are set when their conditions are not
met:

https://paradox.mlr-org.com/reference/condition_test.html
https://paradox.mlr-org.com/reference/condition_test.html
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# error as kernel is not polynomial
lrn("regr.svm", kernel = "linear", degree = 1)

Error in self$assert(xs, sanitize = TRUE): Assertion on 'xs' failed: degree: can only be set if the following condition is met 'kernel == polynomial'. Instead the current parameter value is: kernel == linear.

# works because kernel is polynomial
lrn("regr.svm", kernel = "polynomial", degree = 1)

<LearnerRegrSVM:regr.svm>: Support Vector Machine
* Model: -
* Parameters: degree=1, kernel=polynomial
* Packages: mlr3, mlr3learners, e1071
* Predict Types: [response]
* Feature Types: logical, integer, numeric
* Properties: -

2.2.4 Baseline Learners
Before we move on to learner evaluation, we will highlight an important class of learners.
These are extremely simple or ‘weak’ learners known as baselines Baselines. Baselines are useful in
model comparison (Chapter 3) and as fallback learners (Section 5.1.1, Section 10.2.2). For
regression, we have implemented the baseline lrn("regr.featureless"), which always
predicts new values to be the mean (or median, if the robust hyperparameter is set to
TRUE) of the target in the training data:

# generate data
df = as_task_regr(data.frame(x = runif(1000), y = rnorm(1000, 2, 1)),
target = "y")

lrn("regr.featureless")$train(df, 1:995)$predict(df, 996:1000)

<PredictionRegr> for 5 observations:
row_ids truth response

996 2.581 1.976
997 2.344 1.976
998 2.869 1.976
999 1.054 1.976
1000 0.391 1.976

It is good practice to test all new models against a baseline, and also to include baselines
in experiments with multiple other models. In general, a model that does not outperform
a baseline is a ‘bad’ model, on the other hand, a model is not necessarily ‘good’ if it
outperforms the baseline.

2.3 Evaluation
Perhaps the most important step of the applied machine learning workflow is evaluating
model performance. Without this, we would have no way to know if our trained model
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makes very accurate predictions, is worse than randomly guessing, or somewhere in between.
We will continue with our decision tree example to establish if the quality of our predictions
is ‘good’, first we will rerun the above code so it is easier to follow along.

lrn_rpart = lrn("regr.rpart")
tsk_mtcars = tsk("mtcars")
splits = partition(tsk_mtcars)
lrn_rpart$train(tsk_mtcars, splits$train)
prediction = lrn_rpart$predict(tsk_mtcars, splits$test)

2.3.1 Measures
The quality of predictions is evaluated using measures that compare them to the ground
truth data for supervised learning tasks. Similarly to Tasks and Learners, the available
measures in mlr3 are stored in a dictionary called mlr_measures

mlr_measures
and can be accessed with

msr()msr() :

as.data.table(msr())

key label task_type
1: aic Akaike Information Criterion <NA>
2: bic Bayesian Information Criterion <NA>
3: ci Default CI <NA>
4: ci.con_z Conservative-Z CI <NA>
5: ci.cor_t Corrected-T CI <NA>
---
71: sim.jaccard Jaccard Similarity Index <NA>
72: sim.phi Phi Coefficient Similarity <NA>
73: time_both Elapsed Time <NA>
74: time_predict Elapsed Time <NA>
75: time_train Elapsed Time <NA>
4 variable(s) not shown: [packages, predict_type, properties, task_properties]

All measures implemented in mlr3 are defined primarily by three components: 1) the func-
tion that defines the measure; 2) whether a lower or higher value is considered ‘good’; and
3) the range of possible values the measure can take. As well as these defining elements,
other metadata are important to consider when selecting and using a Measure, including if
the measure has any special properties (e.g., requires training data), the type of predictions
the measure can evaluate, and whether the measure has any ‘control parameters’. All this
information is encapsulated in the MeasureMeasure object. By example, let us consider the mean
absolute error (MAE):

measure = msr("regr.mae")
measure

<MeasureRegrSimple:regr.mae>: Mean Absolute Error
* Packages: mlr3, mlr3measures
* Range: [0, Inf]
* Minimize: TRUE
* Average: macro

https://mlr3.mlr-org.com/reference/mlr_measures.html
https://mlr3.mlr-org.com/reference/Measure.html
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* Parameters: list()
* Properties: -
* Predict type: response

This measure compares the absolute difference (‘error’) between true and predicted values:
𝑓(𝑦, ̂𝑦) = |𝑦 − ̂𝑦|. Lower values are considered better (Minimize: TRUE), which is intuitive
as we would like the true values, 𝑦, to be identical (or as close as possible) in value to
the predicted values, ̂𝑦. We can see that the range of possible values the learner can take is
from 0 to ∞ (Range: [0, Inf]), it has no special properties (Properties: -), it evaluates
response type predictions for regression models (Predict type: response), and it has no
control parameters (Parameters: list()).

Now let us see how to use this measure for scoring our predictions.

2.3.2 Scoring Predictions
Usually, supervised learning measures compare the difference between predicted values and
the ground truth. mlr3 simplifies the process of bringing these quantities together by storing
the predictions and true outcomes in the Prediction object as we have already seen.

prediction

<PredictionRegr> for 11 observations:
row_ids truth response

6 18.1 24.43
8 24.4 24.43
9 22.8 24.43

--- --- ---
27 26.0 24.43
28 30.4 24.43
31 15.0 16.22

To calculate model performance, we simply call the $score() $score()method of a Prediction
object and pass as a single argument the measure that we want to compute:

prediction$score(measure)

regr.mae
2.937

Note that all task types have default measures that are used if the argument to $score()
is omitted, for regression this is the mean squared error (msr("regr.mse")), which is the
squared difference between true and predicted values: 𝑓(𝑦, ̂𝑦) = (𝑦 − ̂𝑦)2, averaged over the
test set.

It is possible to calculate multiple measures at the same time by passing multiple mea-
sures to $score(). For example, below we compute performance for mean squared error
("regr.mse") and mean absolute error ("regr.mae") – note we use msrs() msrs()to load multiple
measures at once.

measures = msrs(c("regr.mse", "regr.mae"))
prediction$score(measures)

https://mlr3.mlr-org.com/reference/Prediction.html
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regr.mse regr.mae
14.603 2.937

2.3.3 Technical Measures

This section covers advanced ML or technical details.

mlr3 also provides measures that do not quantify the quality of the predictions of a model,
but instead provide ‘meta’-information about the model. These include:

• msr("time_train") – The time taken to train a model.
• msr("time_predict") – The time taken for the model to make predictions.
• msr("time_both") – The total time taken to train the model and then make predictions.
• msr("selected_features") – The number of features selected by a model, which can

only be used if the model has the “selected_features” property.

For example, we could score our decision tree to see how many seconds it took to train the
model and make predictions:

measures = msrs(c("time_train", "time_predict", "time_both"))
prediction$score(measures, learner = lrn_rpart)

time_train time_predict time_both
0.003 0.002 0.005

Notice a few key properties of these measures:

1) time_both is simply the sum of time_train and time_predict.
2) We had to pass learner = lrn_rpart to $score() as these measures have the

requires_learner property:

msr("time_train")$properties

[1] "requires_learner" "requires_no_prediction"

3) These can be used after model training and predicting because we automatically
store model run times whenever $train() and $predict() are called, so the
measures above are equivalent to:

c(lrn_rpart$timings, both = sum(lrn_rpart$timings))

train predict both
0.003 0.002 0.005

The selected_features measure calculates how many features were used in the fitted
model.

msr_sf = msr("selected_features")
msr_sf
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<MeasureSelectedFeatures:selected_features>: Absolute or Relative Frequency of Selected Features
* Packages: mlr3
* Range: [0, Inf]
* Minimize: TRUE
* Average: macro
* Parameters: normalize=FALSE
* Properties: requires_task, requires_learner, requires_model,
requires_no_prediction

* Predict type: NA

We can see that this measure contains control parameters Control
Parameters

(Parameters:
normalize=FALSE), which control how the measure is computed. As with hyperpa-
rameters these can be accessed with $param_set:

msr_sf = msr("selected_features")
msr_sf$param_set

<ParamSet(1)>
id class lower upper nlevels default value

1: normalize ParamLgl NA NA 2 <NoDefault[0]> FALSE

The normalize hyperparameter specifies whether the returned number of selected features
should be normalized by the total number of features, this is useful if you are comparing
this value across tasks with differing numbers of features. We would change this parameter
in the exact same way as we did with the learner above:

msr_sf$param_set$values$normalize = TRUE
prediction$score(msr_sf, task = tsk_mtcars, learner = lrn_rpart)

selected_features
0.1

Note that we passed the task and learner as the measure has the requires_task and
requires_learner properties.

2.4 Our First Regression Experiment
We have now seen how to train a model, make predictions and score them. What we have
not yet attempted is to ascertain if our predictions are any ‘good’. So before look at how the
building blocks of mlr3 extend to classification, we will take a brief pause to put together
everything above in a short experiment to assess the quality of our predictions. We will do
this by comparing the performance of a featureless regression learner to a decision tree with
changed hyperparameters.

library(mlr3)
set.seed(349)
# load and partition our task
tsk_mtcars = tsk("mtcars")



34 Data and Basic Modeling

splits = partition(tsk_mtcars)
# load featureless learner
lrn_featureless = lrn("regr.featureless")
# load decision tree and set hyperparameters
lrn_rpart = lrn("regr.rpart", cp = 0.2, maxdepth = 5)
# load MSE and MAE measures
measures = msrs(c("regr.mse", "regr.mae"))
# train learners
lrn_featureless$train(tsk_mtcars, splits$train)
lrn_rpart$train(tsk_mtcars, splits$train)
# make and score predictions
lrn_featureless$predict(tsk_mtcars, splits$test)$score(measures)

regr.mse regr.mae
63.288 6.409

lrn_rpart$predict(tsk_mtcars, splits$test)$score(measures)

regr.mse regr.mae
21.806 3.664

Before starting the experiment we load the mlr3 library and set a seed. We loaded the mtcars
task using tsk() and then split this using partition with the default 2/3 split. Next, we
loaded a featureless baseline learner ("regr.featureless") with the lrn() function. Then
loaded a decision tree (lrn("regr.rpart")) but changed the complexity parameter and
max tree depth from their defaults. We then used msrs() to load multiple measures at once,
the mean squared error (MSE: regr.mse) and the mean absolute error (MAE: regr.mae).
With all objects loaded, we trained our models, ensuring we passed the same training data
to both. Finally, we made predictions from our trained models and scored these. For both
MSE and MAE, lower values are ‘better’ (Minimize: TRUE) and we can therefore conclude
that our decision tree performs better than the featureless baseline. In Section 3.3 we will
see how to formalize comparison between models in a more efficient way using benchmark().

Now we have put everything together you may notice that our learners and measures both
have the "regr." prefix, which is a handy way of reminding us that we are working with a
regression task and therefore must make use of learners and measures built for regression.
In the next section, we will extend the building blocks of mlr3 to consider classification
tasks, which make use of learners and measures with the "classif." prefix.

2.5 Classification
Classification problems are ones in which a model predicts a discrete, categorical target, as
opposed to a continuous, numeric quantity. For example, predicting the species of penguin
from its physical characteristics would be a classification problem as there is a defined set
of species. mlr3 ensures that the interface for all tasks is as similar as possible (if not
identical) and therefore we will not repeat any content from the previous section but will
just focus on differences that make classification a unique machine learning problem. We
will first demonstrate the similarities between regression and classification by performing

https://mlr3.mlr-org.com/reference/benchmark.html
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an experiment very similar to the one in Section 2.4, using code that will now be familiar
to you. We will then move to differences in tasks, learners and predictions, before looking
at thresholding, which is a method specific to classification.

2.5.1 Our First Classification Experiment
The interface for classification tasks, learners, and measures, is identical to the regression
setting, except the underlying objects inherit from TaskClassif, LearnerClassif, and
MeasureClassif, respectively. We can therefore run a very similar experiment to the one
above.

library(mlr3)
set.seed(349)
# load and partition our task
tsk_penguins = tsk("penguins")
splits = partition(tsk_penguins)
# load featureless learner
lrn_featureless = lrn("classif.featureless")
# load decision tree and set hyperparameters
lrn_rpart = lrn("classif.rpart", cp = 0.2, maxdepth = 5)
# load accuracy measure
measure = msr("classif.acc")
# train learners
lrn_featureless$train(tsk_penguins, splits$train)
lrn_rpart$train(tsk_penguins, splits$train)
# make and score predictions
lrn_featureless$predict(tsk_penguins, splits$test)$score(measure)

classif.acc
0.4561

lrn_rpart$predict(tsk_penguins, splits$test)$score(measure)

classif.acc
0.9474

In this experiment, we loaded the predefined task penguins, which is based on the penguins
dataset, then partitioned the data into training and test splits. We loaded the featureless
classification baseline (using the default which always predicts the most common class in the
training data, but which also has the option of predicting (uniformly or weighted) random
response values) and a classification decision tree, then the accuracy measure (number of
correct predictions divided by total number of predictions), trained our models and finally
made and scored predictions. Once again we can be happy with our predictions, which are
vastly more accurate than the baseline.

Now that we have seen the similarities between classification and regression, we can turn
to some key differences.

https://mlr3.mlr-org.com/reference/TaskClassif.html
https://mlr3.mlr-org.com/reference/LearnerClassif.html
https://mlr3.mlr-org.com/reference/MeasureClassif.html
https://www.rdocumentation.org/packages/palmerpenguins/topics/penguins
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2.5.2 TaskClassif
Classification tasks, objects inheriting from TaskClassifTaskClassif , are very similar to regression
tasks, except that the target variable is of type factor and will have a limited number of
possible classes/categories that observations can fall into.

You can view the predefined classification tasks in mlr3 by filtering the mlr_tasks dictio-
nary:

as.data.table(mlr_tasks)[task_type == "classif"]

key label task_type
1: breast_cancer Wisconsin Breast Cancer classif
2: german_credit German Credit classif
3: ilpd Indian Liver Patient Data classif
4: iris Iris Flowers classif
5: optdigits Optical Recognition of Handwritten Digits classif
---
9: sonar Sonar: Mines vs. Rocks classif
10: spam HP Spam Detection classif
11: titanic Titanic classif
12: wine Wine Regions classif
13: zoo Zoo Animals classif
10 variable(s) not shown: [nrow, ncol, properties, lgl, int, dbl, chr, fct, ord, pxc]

You can create your own task with as_task_classif
as_task_classif

.

as_task_classif(palmerpenguins::penguins, target = "species")

<TaskClassif:palmerpenguins::penguins> (344 x 8)
* Target: species
* Properties: multiclass
* Features (7):
- int (3): body_mass_g, flipper_length_mm, year
- dbl (2): bill_depth_mm, bill_length_mm
- fct (2): island, sex

There are two types of classification tasks supported in mlr3: binary classification, in which
the outcome can be one of two categories, and multiclass classification, where the outcome
can be one of three or more categories.

The sonar task is an example of a binary classification problem, as the target can only take
two different values, in mlr3 terminology it has the “twoclass” property:

tsk_sonar = tsk("sonar")
tsk_sonar

<TaskClassif:sonar> (208 x 61): Sonar: Mines vs. Rocks
* Target: Class
* Properties: twoclass
* Features (60):
- dbl (60): V1, V10, V11, V12, V13, V14, V15, V16, V17, V18,

V19, V2, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29,

https://mlr3.mlr-org.com/reference/TaskClassif.html
https://mlr3.mlr-org.com/reference/as_task_classif.html
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V3, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V4,
V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V5, V50,
V51, V52, V53, V54, V55, V56, V57, V58, V59, V6, V60, V7,
V8, V9

tsk_sonar$class_names

[1] "M" "R"

In contrast, tsk("penguins") is a multiclass problem as there are more than two species
of penguins; it has the “multiclass” property:

tsk_penguins = tsk("penguins")
tsk_penguins$properties

[1] "multiclass"

tsk_penguins$class_names

[1] "Adelie" "Chinstrap" "Gentoo"

A further difference between these tasks is that binary classification tasks have an extra
field called $positive $positive, which defines the ‘positive’ class. In binary classification, as there
are only two possible class types, by convention one of these is known as the ‘positive’ class,
and the other as the ‘negative’ class. It is arbitrary which is which, though often the more
‘important’ (and often smaller) class is set as the positive class. You can set the positive
class during or after construction. If no positive class is specified then mlr3 assumes the
first level in the target column is the positive class, which can lead to misleading results.

# Load the "Sonar" dataset from the "mlbench" package as an example
data(Sonar, package = "mlbench")
# specifying the positive class:
tsk_classif = as_task_classif(Sonar, target = "Class", positive = "R")
tsk_classif$positive

[1] "R"

# changing after construction
tsk_classif$positive = "M"
tsk_classif$positive

[1] "M"

While the choice of positive and negative class is arbitrary, they are essential to ensuring
results from models and performance measures are interpreted as expected – this is best
demonstrated when we discuss thresholding (Section 2.5.4) and ROC metrics (Section 3.4).

Finally, plotting is possible with autoplot.TaskClassif, below we plot a comparison be-
tween the target column and features.

https://mlr3viz.mlr-org.com/reference/autoplot.TaskClassif.html
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library(ggplot2)
autoplot(tsk("penguins"), type = "duo") +
theme(strip.text.y = element_text(angle = -45, size = 8))
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Figure 2.4: Overview of part of the penguins dataset.

2.5.3 LearnerClassif and MeasureClassif
Classification learners, which inherit from LearnerClassif

LearnerClassif
, have nearly the same interface

as regression learners. However, a key difference is that the possible predictions in classi-
fication are either "response" – predicting an observation’s class (a penguin’s species in
our example, this is sometimes called “hard labeling”) – or "prob" – predicting a vector
of probabilities, also called “posterior probabilities”, of an observation belonging to each
class. In classification, the latter can be more useful as it provides information about the
confidence of the predictions:

https://mlr3.mlr-org.com/reference/LearnerClassif.html
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lrn_rpart = lrn("classif.rpart", predict_type = "prob")
lrn_rpart$train(tsk_penguins, splits$train)
prediction = lrn_rpart$predict(tsk_penguins, splits$test)
prediction

<PredictionClassif> for 114 observations:
row_ids truth response prob.Adelie prob.Chinstrap prob.Gentoo

1 Adelie Adelie 0.97030 0.0297 0.00000
2 Adelie Adelie 0.97030 0.0297 0.00000
3 Adelie Adelie 0.97030 0.0297 0.00000

--- --- --- --- --- ---
338 Chinstrap Chinstrap 0.04255 0.9362 0.02128
339 Chinstrap Chinstrap 0.04255 0.9362 0.02128
342 Chinstrap Chinstrap 0.04255 0.9362 0.02128

Notice how the predictions include the predicted probabilities for all three classes, as well
as the response, which (by default) is the class with the highest predicted probability.

Also, the interface for classification measures, which are of class MeasureClassif
MeasureClassif

, is identi-
cal to regression measures. The key difference in usage is that you will need to ensure your
selected measure evaluates the prediction type of interest. To evaluate "response" predic-
tions, you will need measures with predict_type = "response", or to evaluate probability
predictions you will need predict_type = "prob". The easiest way to find these measures
is by filtering the mlr_measures dictionary:

as.data.table(msr())[
task_type == "classif" & predict_type == "prob" &
!sapply(task_properties, function(x) "twoclass" %in% x)]

key label
1: classif.logloss Log Loss
2: classif.mauc_au1p Weighted average 1 vs. 1 multiclass AUC
3: classif.mauc_au1u Average 1 vs. 1 multiclass AUC
4: classif.mauc_aunp Weighted average 1 vs. rest multiclass AUC
5: classif.mauc_aunu Average 1 vs. rest multiclass AUC
6: classif.mauc_mu Multiclass mu AUC
7: classif.mbrier Multiclass Brier Score
5 variable(s) not shown: [task_type, packages, predict_type, properties, task_properties]

We also filtered to remove any measures that have the "twoclass" property as this would
conflict with our "multiclass" task. We need to use sapply for this, the task_properties
column is a list column. We can evaluate the quality of our probability predictions and
response predictions simultaneously by providing multiple measures:

measures = msrs(c("classif.mbrier", "classif.logloss", "classif.acc"))
prediction$score(measures)

classif.mbrier classif.logloss classif.acc
0.1029 0.7548 0.9386

The accuracy measure evaluates the "response" predictions whereas the Brier score
("classif.mbrier", squared difference between predicted probabilities and the truth) and

https://mlr3.mlr-org.com/reference/MeasureClassif.html
https://mlr3.mlr-org.com/reference/mlr_measures.html
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logloss ("classif.logloss", negative logarithm of the predicted probability for the true
class) are evaluating the probability predictions.

If no measure is passed to $score(), the default is the classification error
(msr("classif.ce")), which is the number of misclassifications divided by the number
of predictions, i.e., 1− msr("classif.acc").

2.5.4 PredictionClassif, Confusion Matrix, and Thresholding
PredictionClassif

PredictionClassif
objects have two important differences from their regression analog.

Firstly, the added field $confusion, and secondly the added method $set_threshold().

Confusion matrix

A confusion matrixConfusion
Matrix

is a popular way to show the quality of classification (response) predic-
tions in a more detailed fashion by seeing if a model is good at (mis)classifying observations
in a particular class. For binary and multiclass classification, the confusion matrix is stored
in the $confusion$confusion field of the PredictionClassif object:

prediction$confusion

truth
response Adelie Chinstrap Gentoo
Adelie 48 2 0
Chinstrap 4 14 1
Gentoo 0 0 45

The rows in a confusion matrix are the predicted class and the columns are the true class.
All off-diagonal entries are incorrectly classified observations, and all diagonal entries are
correctly classified. In this case, the classifier does fairly well classifying all penguins, but we
could have found that it only classifies the Adelie species well but often conflates Chinstrap
and Gentoo, for example.

You can visualize the predicted class labels with autoplot.PredictionClassif().

autoplot(prediction)
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Figure 2.5: Counts of each class label in the ground truth data (left) and predictions (right).

https://mlr3.mlr-org.com/reference/PredictionClassif.html
https://mlr3.mlr-org.com/reference/PredictionClassif.html
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In the binary classification case, the top left entry corresponds to true positives, the top
right to false positives, the bottom left to false negatives and the bottom right to true
negatives. Taking tsk_sonar as an example with M as the positive class:

splits = partition(tsk_sonar)
lrn_rpart$
train(tsk_sonar, splits$train)$
predict(tsk_sonar, splits$test)$
confusion

truth
response M R

M 16 13
R 13 27

We will return to the concept of binary (mis)classification in greater detail in Section 3.4.

Thresholding

The final big difference compared to regression we will discuss is thresholding Threshold-
ing

. We saw
previously that the default response prediction type is the class with the highest predicted
probability. For k classes with predicted probabilities 𝑝1, … , 𝑝𝑘, this is the same as saying
response = argmax{𝑝1, … , 𝑝𝑘}. If the maximum probability is not unique, i.e., multiple
classes are predicted to have the highest probability, then the response is chosen randomly
from these. In binary classification, this means that the positive class will be selected if the
predicted class is greater than 50%, and the negative class otherwise.

This 50% value is known as the threshold and it can be useful to change this threshold
if there is class imbalance (when one class is over- or under-represented in a dataset), or
if there are different costs associated with classes, or simply if there is a preference to
‘over’-predict one class. As an example, let us take tsk("german_credit") in which 700
customers have good credit and 300 have bad. Now we could easily build a model with
around “70%” accuracy simply by always predicting a customer will have good credit:

task_credit = tsk("german_credit")
lrn_featureless = lrn("classif.featureless", predict_type = "prob")
split = partition(task_credit)
lrn_featureless$train(task_credit, split$train)
prediction = lrn_featureless$predict(task_credit, split$test)
prediction$score(msr("classif.acc"))

classif.acc
0.6576

autoplot(prediction)

While this model may appear to have good performance on the surface, in fact, it just
ignores all ‘bad’ customers – this can create big problems in this finance example, as well as
in healthcare tasks and other settings where false positives cost more than false negatives
(see Section 13.1 for cost-sensitive classification).

Thresholding allows classes to be selected with a different probability threshold, so instead
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Figure 2.6: Class labels ground truth (left) and predictions (right). The learner completely
ignores the ‘bad’ class.

of predicting that a customer has bad credit if P(good) < 50%, we might predict bad credit
if P(good) < 70% – notice how we write this in terms of the positive class, which in this
task is ‘good’. Let us see this in practice:

prediction$set_threshold(0.7)
prediction$score(msr("classif.acc"))

classif.acc
0.6576

lrn_rpart = lrn("classif.rpart", predict_type = "prob")
lrn_rpart$train(task_credit, split$train)
prediction = lrn_rpart$predict(task_credit, split$test)
prediction$score(msr("classif.acc"))

classif.acc
0.6727

prediction$confusion

truth
response good bad

good 196 87
bad 21 26

prediction$set_threshold(0.7)
prediction$score(msr("classif.acc"))

classif.acc
0.6727

prediction$confusion
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truth
response good bad

good 196 87
bad 21 26

While our model performs ‘worse’ overall, i.e. with lower accuracy, it is still a ‘better’ model
as it more accurately captures the relationship between classes.

In the binary classification setting, $set_threshold() only requires one numeric argument,
which corresponds with the threshold for the positive class – hence it is essential to ensure
the positive class is correctly set in your task.

In multiclass classification, thresholding works by first assigning a threshold to each of
the n classes, dividing the predicted probabilities for each class by these thresholds to
return n ratios, and then the class with the highest ratio is selected. For example, say we
are predicting if a new observation will be of class A, B, C, or D and we have predicted
𝑃(𝐴 = 0.2), 𝑃 (𝐵 = 0.4), 𝑃 (𝐶 = 0.1), 𝑃 (𝐷 = 0.3). We will assume that the threshold for all
classes is identical and 1:

probs = c(0.2, 0.4, 0.1, 0.3)
thresholds = c(A = 1, B = 1, C = 1, D = 1)
probs/thresholds

A B C D
0.2 0.4 0.1 0.3

We would therefore predict our observation is of class B as this is the highest ratio. However,
we could change our thresholds so that D has the lowest threshold and is most likely to be
predicted, A has the highest threshold, and B and C have equal thresholds:

thresholds = c(A = 0.5, B = 0.25, C = 0.25, D = 0.1)
probs/thresholds

A B C D
0.4 1.6 0.4 3.0

Now our observation will be predicted to be in class D.

In mlr3, this is achieved by passing a named list to $set_threshold(). This is demonstrated
below with tsk("zoo"). Before changing the thresholds, some classes are never predicted
and some are predicted more often than they occur.

library(ggplot2)
library(patchwork)

tsk_zoo = tsk("zoo")
splits = partition(tsk_zoo)
lrn_rpart = lrn("classif.rpart", predict_type = "prob")
lrn_rpart$train(tsk_zoo, splits$train)
prediction = lrn_rpart$predict(tsk_zoo, splits$test)
before = autoplot(prediction) + ggtitle("Default thresholds")
new_thresh = proportions(table(tsk_zoo$truth(splits$train)))
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new_thresh

mammal bird reptile fish amphibian
0.38235 0.20588 0.07353 0.11765 0.05882
insect mollusc.et.al
0.10294 0.05882

prediction$set_threshold(new_thresh)
after = autoplot(prediction) + ggtitle("Inverse weighting thresholds")
before + after + plot_layout(guides = "collect")
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Figure 2.7: Comparing predicted and ground truth values for the zoo dataset.

Again we see that the model better represents all classes after thresholding. In this example
we set the new thresholds to be the proportions of each class in the training set. This is
known as inverse weighting, as we divide the predicted probability by these class proportions
before we select the label with the highest ratio.

In Section 13.1 we will look at cost-sensitive classification where each cell in the confusion
matrix has a different associated cost.

2.6 Task Column Roles

This section covers advanced ML or technical details.

Now that we have covered regression and classification, we will briefly return to tasks and
in particular to column roles, which are used to customize tasks further. Column roles are
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used by Task objects to define important metadata that can be used by learners and other
objects to interact with the task. True to their name, they assign particular roles to columns
in the data, we have already seen some of these in action with targets and features. There
are seven column roles:

1. "feature": Features used for prediction.
2. "target": Target variable to predict.
3. "name": Row names/observation labels, e.g., for mtcars this is the "model" col-

umn.
4. "order": Variable(s) used to order data returned by $data(); must be sortable

with order().
5. "group": Variable used to keep observations together during resampling.
6. "stratum": Variable(s) to stratify during resampling.
7. "weight": Observation weights. Only one numeric column may have this role.

We have already seen how features and targets work in Section 2.1, which are the only
column roles that each task must have. In Section 3.2.5 we will have a look at the stratum
and group column roles. So, for now, we will only look at order, and weight. We will not
go into detail about name, which is primarily used in plotting and will almost always be the
rownames() of the underlying data.

Column roles are updated using $set_col_roles(). When we set the "order" column
role, the data is ordered according to that column(s). In the following example, we set the
"order" column role and then order data by this column by including ordered = TRUE:

df = data.frame(mtcars[1:2, ], idx = 2:1)
tsk_mtcars_order = as_task_regr(df, target = "mpg")
# original order
tsk_mtcars_order$data(ordered = TRUE)

mpg am carb cyl disp drat gear hp idx qsec vs wt
1: 21 1 4 6 160 3.9 4 110 2 16.46 0 2.620
2: 21 1 4 6 160 3.9 4 110 1 17.02 0 2.875

# order by "idx" column
tsk_mtcars_order$set_col_roles("idx", roles = "order")
tsk_mtcars_order$data(ordered = TRUE)

mpg am carb cyl disp drat gear hp qsec vs wt
1: 21 1 4 6 160 3.9 4 110 17.02 0 2.875
2: 21 1 4 6 160 3.9 4 110 16.46 0 2.620

In this example we can see that by setting "idx" to have the "order" column role, it is no
longer used as a feature when we run $data() but instead is used to order the observations
according to its value. This metadata is not passed to a learner.

The weights column role is used to weight data points differently. One example of why
we would do this is in classification tasks with severe class imbalance, where weighting the
minority class more heavily may improve the model’s predictive performance for that class.
For example in the breast_cancer dataset, there are more instances of benign tumors than
malignant tumors, so if we want to better predict malignant tumors we could weight the
data in favor of this class:
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cancer_unweighted = tsk("breast_cancer")
summary(cancer_unweighted$data()$class)

malignant benign
239 444

# add column where weight is 2 if class "malignant", and 1 otherwise
df = cancer_unweighted$data()
df$weights = ifelse(df$class == "malignant", 2, 1)

# create new task and role
cancer_weighted = as_task_classif(df, target = "class")
cancer_weighted$set_col_roles("weights", roles = "weight")

# compare weighted and unweighted predictions
split = partition(cancer_unweighted)
lrn_rf = lrn("classif.ranger")
lrn_rf$train(cancer_unweighted, split$train)$
predict(cancer_unweighted, split$test)$score()

classif.ce
0.05333

lrn_rf$train(cancer_weighted, split$train)$
predict(cancer_weighted, split$test)$score()

classif.ce
0.04

In this example, weighting improves the overall model performance (but see Chapter 3 for
more thorough comparison methods). Not all models can handle weights in tasks so check
a learner’s properties to make sure this column role is being used as expected.

2.7 Supported Learning Algorithms
mlr3 supports many learning algorithms (some with multiple implementations) as Learners.
These are primarily provided by the mlr3, mlr3learners and mlr3extralearners packages.
However, all packages that implement new tasks (Chapter 13) also include a handful of
simple algorithms.

The list of learners included in mlr3 is deliberately small to avoid large sets of dependencies:

• Featureless learners ("regr.featureless"/"classif.featureless"), which are baseline
learners (Section 2.2.4).

• Debug learners ("regr.debug"/"classif.debug"), which are used to debug code (Sec-
tion 10.2).

• Classification and regression trees (also known as CART:
"regr.rpart"/"classif.rpart").

https://mlr3.mlr-org.com
https://mlr3learners.mlr-org.com
https://mlr3extralearners.mlr-org.com
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The mlr3learners package contains a selection of algorithms (and select implementations)
chosen by the mlr team that we recommend as a good starting point for most experiments:

• Linear ("regr.lm") and logistic ("classif.log_reg") regression.
• Penalized generalized linear models, where the penalization is either exposed as a hyper-

parameter ("regr.glmnet"/"classif.glmnet") or where it is optimized automatically
("regr.cv_glmnet"/"classif.cv_glmnet").

• Weighted 𝑘-Nearest Neighbors ("regr.kknn"/"classif.kknn").
• Kriging / Gaussian process regression ("regr.km").
• Linear ("classif.lda") and quadratic ("classif.qda") discriminant analysis.
• Naïve Bayes classification ("classif.naive_bayes").
• Support-vector machines ("regr.svm"/"classif.svm").
• Gradient boosting ("regr.xgboost"/"classif.xgboost").
• Random forests for regression and classification ("regr.ranger"/"classif.ranger").

The majority of other supported learners are in mlr3extralearners. You can find an up-
to-date list of learners at https://mlr-org.com/learners.html.

The dictionary mlr_learners contains learners that are supported in loaded packages:

learners_dt = as.data.table(mlr_learners)
learners_dt

key label task_type
1: classif.AdaBoostM1 Adaptive Boosting classif
2: classif.C50 Tree-based Model classif
3: classif.IBk Nearest Neighbour classif
4: classif.J48 Tree-based Model classif
5: classif.JRip Propositional Rule Learner. classif
---
173: surv.ranger Random Forest surv
174: surv.rfsrc Random Forest surv
175: surv.svm Survival Support Vector Machine surv
176: surv.xgboost.aft Extreme Gradient Boosting AFT surv
177: surv.xgboost.cox Extreme Gradient Boosting Cox surv
4 variable(s) not shown: [feature_types, packages, properties, predict_types]

The resulting data.table contains a lot of metadata that is useful for identifying learners
with particular properties. For example, we can list all learners that support classification
problems:

learners_dt[task_type == "classif"]

key label
1: classif.AdaBoostM1 Adaptive Boosting
2: classif.C50 Tree-based Model
3: classif.IBk Nearest Neighbour
4: classif.J48 Tree-based Model
5: classif.JRip Propositional Rule Learner.
---
57: classif.simple_logistic LogitBoost Based Logistic Regression
58: classif.smo Support Vector Machine

https://mlr3learners.mlr-org.com
https://mlr3extralearners.mlr-org.com
https://mlr-org.com/learners.html
https://mlr3.mlr-org.com/reference/mlr_learners.html
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59: classif.svm Support Vector Machine
60: classif.voted_perceptron Voted Perceptron
61: classif.xgboost Extreme Gradient Boosting
5 variable(s) not shown: [task_type, feature_types, packages, properties, predict_types]

We can filter by multiple conditions, for example to list all regression learners that can
predict standard errors:

learners_dt[task_type == "regr" &
sapply(predict_types, function(x) "se" %in% x)]

key
1: regr.debug
2: regr.earth
3: regr.featureless
4: regr.gam
5: regr.glm
6: regr.km
7: regr.lm
8: regr.mob
9: regr.qgam
10: regr.ranger
6 variable(s) not shown: [label, task_type, feature_types, packages, properties, predict_types]

2.8 Conclusion
In this chapter, we covered the building blocks of mlr3. We first introduced basic ML
methodology and then showed how this is implemented in mlr3. We began by looking at
the Task class, which is used to define machine learning tasks or problems to solve. We then
looked at the Learner class, which encapsulates machine learning algorithms, hyperparam-
eters, and other meta-information. Finally, we considered how to evaluate machine learning
models with objects from the Measure class. After looking at regression implementations,
we extended all the above to the classification setting, before finally looking at some extra
details about tasks and the learning algorithms that are implemented across mlr3. The
rest of this book will build on the basic elements seen in this chapter, starting with more
advanced model comparison methods in Chapter 3 before moving on to improve model
performance with automated hyperparameter tuning in Chapter 4.

Table 2.2: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor/Function Fields/Methods
Task tsk()/tsks()/as_task_X $filter(); $select(); $data()
Learner lrn()/lrns() $train(); $predict();

$predict_newdata(); $model()
Prediction some_learner$predict() $score(); $set_threshold();

$confusion

https://mlr3.mlr-org.com
https://mlr3.mlr-org.com/reference/Task.html
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/Measure.html
https://mlr3.mlr-org.com/reference/Task.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3.mlr-org.com/reference/Prediction.html
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Class Constructor/Function Fields/Methods
Measure msr()/msrs() -

2.9 Exercises
1. Train a classification model with the classif.rpart learner on the “Pima

Indians Diabetes” dataset. Do this without using tsk("pima"), and in-
stead by constructing a task from the dataset in the mlbench-package:
data(PimaIndiansDiabetes2, package = "mlbench"). Make sure to define the
pos outcome as positive class. Train the model on a random 80% subset of the
given data and evaluate its performance with the classification error measure on
the remaining data. (Note that the data set has NAs in its features. You can
either rely on rpart‘s capability to handle them internally (’surrogate splits’) or
remove them from the initial data.frame by using na.omit.

2. Calculate the true positive, false positive, true negative, and false negative rates
of the predictions made by the model in Exercise 1. Try to solve this in two ways:
(a) Using mlr3measures-predefined measure objects, and (b) without using mlr3
tools by directly working on the ground truth and prediction vectors. Compare
the results.

3. Change the threshold of the model from Exercise 1 such that the false positive
rate is lower than the false negative rate. What is one reason you might do this
in practice?

https://mlr3.mlr-org.com/reference/Measure.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
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A supervised machine learning model can only be deployed in practice if it has a good
generalization performance Generaliza-

tion
Performance

, which means it generalizes well to new, unseen data. Accurate
estimation of the generalization performance is crucial for many aspects of machine learning
application and research – whether we want to fairly compare a novel algorithm with estab-
lished ones or to find the best algorithm for a particular task. The concept of performance
estimation provides information on how well a model will generalize to new data and plays
an important role in the context of model comparison (Section 3.3), model selection, and
hyperparameter tuning (Chapter 4).

Assessing the generalization performance of a model begins with selecting a performance
measure that is appropriate for our given task and evaluation goal. As we have seen in
Section 2.3, performance measures typically compute a numeric score indicating how well
the model predictions match the ground truth (though some technical measures were seen
in Section 2.3.3). Once we have decided on a performance measure, the next step is to
adopt a strategy that defines how to use the available data to estimate the generalization
performance. Using the same data to train and test a model is a bad strategy as it would lead
to an overly optimistic performance estimate. For example, a model that is overfitted (fit too
closely to the data) could make perfect predictions on training data simply by memorizing
it and then only make random guesses for new data. In Section 2.2.1.1 we introduced
partition(), which splits a dataset into training data – data for training the model – and
test data – data for testing the model and estimating the generalization performance, this
is known as the holdout strategy (Section 3.1) and is where we will begin this chapter. We
will then consider more advanced strategies for assessing the generalization performance
(Section 3.2), look at robust methods for comparing models (Section 3.3), and finally will
discuss specialized performance measures for binary classification (Section 3.4). For an in-
depth overview of measures and performance estimation, we recommend Japkowicz and
Shah (2011).

Resampling Does Not Avoid Model Overfitting

A common misunderstanding is that holdout and other more advanced resampling
strategies can prevent model overfitting. In fact, these methods just make overfitting
visible as we can separately evaluate train/test performance. Resampling strategies
also allow us to make (nearly) unbiased estimations of the generalization error.
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3.1 Holdout and Scoring
An important goal of ML is to learn a model that can then be used to make predictions
about new data. For this model to be as accurate as possible, we would ideally train it on as
much data as is available. However, data is limited and as we have discussed we cannot train
and test a model on the same data. In practice, one would usually create an intermediate
modelIntermediate

Model
, which is trained on a subset of the available data and then tested on the remainder

of the data. The performance of this intermediate model, obtained by comparing the model
predictions to the ground truth, is an estimate of the generalization performance of the final
model, which is the model fitted on all data.

The holdoutHoldout strategy is a simple method to create this split between training and testing
datasets, whereby the original data is split into two datasets using a defined ratio. Ideally, the
training dataset should be as large as possible so the intermediate model represents the final
model as well possible. If the training data is too small, the intermediate model is unlikely to
perform as well as the final model, resulting in a pessimistically biased performance estimate.
On the other hand, if the training data is too large, then we will not have a reliable estimate
of the generalization performance due to high variance resulting from small test data. As a
rule of thumb, it is common to use 2/3 of the data for training and 1/3 for testing as this
provides a reasonable trade-off between bias and variance of the generalization performance
estimate (Kohavi 1995; Dobbin and Simon 2011).

In Chapter 2, we used partition() to apply the holdout method to a Task object. To
recap, let us split tsk("penguins") with a 2/3 holdout (default split):

tsk_penguins = tsk("penguins")
splits = partition(tsk_penguins)
lrn_rpart = lrn("classif.rpart")
lrn_rpart$train(tsk_penguins, splits$train)
prediction = lrn_rpart$predict(tsk_penguins, splits$test)

We can now estimate the generalization performance of a final model by evaluating the
quality of the predictions from our intermediate model. As we have seen in Section 2.3,
this is simply a case of choosing one or more measures and passing them to the $score()
function. So to estimate the accuracy of our final model we would pass the accuracy measure
to our intermediate model:

prediction$score(msr("classif.acc"))

classif.acc
0.9386

Permuting Observations for Performance Estimation

When splitting data it is essential to permute observations before, to remove any
information that is encoded in data ordering. The order of data is often informative
in real-world datasets, for example hospital data will likely be ordered by time of
patient admission. In tsk("penguins"), the data is ordered such that the first 152

https://mlr3.mlr-org.com/reference/partition.html
https://mlr3.mlr-org.com/reference/Task.html
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rows all have the label ‘Adelie’, the next 68 have the label ‘Chinstrap’, and the final
124 have the label ‘Gentoo’; so if we did not permute the data we could end up with
a model that is only trained on one or two species.
partition() and all resampling strategies discussed below automatically randomly
split the data to prevent any biases (so do not forget to set a seed for reproducibility).
Data within each set may still be ordered because of implementation details, but this
is not a problem as long as the data is shuffled between sets.

Many performance measures are based on ‘decomposable’ losses, which means they compute
the differences between the predicted values and ground truth values first on an observation
level and then aggregate the individual loss values over the test set into a single numeric
score. For example, the classification accuracy compares whether the predicted values from
the response column have the same value as the ground truth values from the truth column
of the Prediction object. Hence, for each observation, the decomposable loss takes either
value 1 (if response and truth have the same value) or 0 otherwise. The $score() method
summarizes these individual loss values into a an average value – the percentage where our
prediction was correct. Other performance measures that are not decomposable instead act
on a set of observations, we will return to this in detail when we look at the AUC measure
in Section 3.4. Figure 3.1 illustrates the input-output behavior of the $score() method, we
will return to this when we turn to more complex evaluation strategies.

Figure 3.1: Illustration of the $score() method which aggregates predictions of multiple
observations contained in a prediction object into a single numeric score

3.2 Resampling
Resampling strategies repeatedly split all available data into multiple training and test
sets, with one repetition corresponding to what is called a ‘resampling iteration’ in mlr3.
An intermediate model is then trained on each training set and the test set is used to
measure the performance in each resampling iteration. The generalization performance is
finally estimated by aggregating the performance scores over multiple resampling iterations
(Figure 3.2). By repeating the data splitting process, data points are repeatedly used for
both training and testing, allowing more efficient use of all available data for performance
estimation. Furthermore, a high number of resampling iterations can reduce the variance
in our scores and thus result in a more reliable performance estimate. This means that the

https://mlr3.mlr-org.com/reference/Prediction.html
https://mlr3.mlr-org.com
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performance estimate is less likely to be affected by an ‘unlucky’ split (e.g., a split that does
not reflect the original data distribution).

Figure 3.2: A general abstraction of the performance estimation process. The available data
is (repeatedly) split into training data and test data (data splitting / resampling process).
The learner is trained on each training dataset and produces intermediate models (learning
process). Each intermediate model makes predictions based on the features in the test
data. The performance measure compares these predictions with the ground truth from the
test data and computes a performance value for each test dataset. All performance values
are aggregated into a scalar value to estimate the generalization performance (evaluation
process).

A variety of resampling strategies exist, each with its advantages and disadvantages, which
depend on the number of available samples, the task complexity, and the type of model.

A very common strategy is k-fold cross-validationCross-
validation

(CV), which randomly partitions the data
into 𝑘 non-overlapping subsets, called folds (Figure 3.3). The 𝑘 models are always trained
on 𝑘−1 of the folds, with the remaining fold being used as test data; this process is repeated
until each fold has acted exactly once as test set. Finally, the 𝑘 performance estimates from
each fold are aggregated, usually by averaging. CV guarantees that each observation will be
used exactly once in a test set, making efficient use of the available data for performance
estimation. Common values for 𝑘 are 5 and 10, meaning each training set will consist of
4/5 or 9/10 of the original data, respectively. Several variations of CV exist, including
repeated k-fold cross-validation where the k-fold process is repeated multiple times, and
leave-one-out cross-validation (LOO-CV) where the number of folds is equal to the number
of observations, leading to the test set in each fold consisting of only one observation.

SubsamplingSubsampling and bootstrapping are two related resampling strategies. Subsampling ran-
domly selects a given ratio (4/5 and 9/10 are common) of the data for the training dataset
where each observation in the dataset is drawn without replacement from the original dataset.
The model is trained on this data and then tested on the remaining data, and this process
is repeated 𝑘 times. This differs from k-fold CV as the subsets of test data may be over-
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lapping. Bootstrapping follows the same process as subsampling but data is drawn with
replacement from the original dataset. Usually the number of bootstrap samples equals the
size of the original dataset. This means an observation could be selected multiple times
(and thus duplicated) in the training data (but never more than once per test dataset). On
average, 1 − 𝑒−1 ≈ 63.2% of the data points will be contained in the training set during
bootstrapping, referred to as “in-bag” samples (the other 36.8% are known as “out-of-bag”
samples).

Note that terminology regarding resampling strategies is not consistent across the literature,
for example, subsampling is sometimes referred to as “repeated holdout” or “Monte Carlo
cross-validation”.

The choice of the resampling strategy usually depends on the specific task at hand and the
goals of the performance assessment, but some rules of thumb are available. If the available
data is fairly small (𝑁 ≤ 500), repeated cross-validation with a large number of repeti-
tions can be used to keep the variance of the performance estimates low (10 folds and 10
repetitions is a good place to start). Traditionally, LOO-CV has also been recommended
for these small sample size regimes, but this estimation scheme is quite expensive (except
in special cases where computational shortcuts exist) and (counterintuitively) suffers from
quite high variance. Furthermore, LOO-CV is also problematic in imbalanced binary clas-
sification tasks as concepts such as stratification (Section 3.2.5) cannot be applied. For the
500 ≤ 𝑁 ≤ 50000 range, 5- to 10-fold CV is generally recommended. In general, the larger
the dataset, the fewer splits are required, yet sample-size issues can still occur, e.g., due
to imbalanced data. For settings where one is more interested in proper inference (such as
through statistical performance tests or confidence intervals) than bare point estimators of
performance, bootstrapping and subsampling are often considered, usually with a higher
number of iterations. Bootstrapping has become less common, as having repeated observa-
tions in training data can lead to problems in some machine learning setups, especially when
combined with model selection methods and nested resampling (as duplicated observations
can then end up simultaneously in training and test sets in nested schemes). Also note that
in all of these common and simple schemes, resampling performance estimates are not in-
dependent, as models are fitted on overlapping training data, making proper inference less
than trivial, but a proper treatment of these issues is out of scope for us here. For further
details and critical discussion we refer to the literature, e.g., Molinaro, Simon, and Pfeiffer
(2005), J.-H. Kim (2009), and Bischl et al. (2012).

Figure 3.3: Illustration of a three-fold cross-validation.

In the rest of this section, we will go through querying and constructing resampling strategies
in mlr3, instantiating train-test splits, and then performing resampling on learners.
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3.2.1 Constructing a Resampling Strategy
All implemented resampling strategies are stored in the mlr_resamplings dictionary.

as.data.table(mlr_resamplings)

key label
1: bootstrap Bootstrap
2: custom Custom Splits
3: custom_cv Custom Split Cross-Validation
4: cv Cross-Validation
5: holdout Holdout
6: insample Insample Resampling
7: loo Leave-One-Out
8: nested_cv Nested CV
9: paired_subsampling Paired Subsampling
10: repeated_cv Repeated Cross-Validation
11: subsampling Subsampling
2 variable(s) not shown: [params, iters]

The params column shows the parameters of each resampling strategy (e.g., the train-test
splitting ratio or the number of repeats) and iters displays the number of performed
resampling iterations by default.

ResamplingResampling objects can be constructed by passing the strategy ‘key’ to the sugar function
rsmp()rsmp() . For example, to construct the holdout strategy with a 4/5 split (2/3 by default):

rsmp("holdout", ratio = 0.8)

<ResamplingHoldout>: Holdout
* Iterations: 1
* Instantiated: FALSE
* Parameters: ratio=0.8

Parameters for objects inheriting from Resampling work in the same way as measures and
learners and can be set, retrieved, and updated accordingly:

# three-fold CV
cv3 = rsmp("cv", folds = 3)
# Subsampling with 3 repeats and 9/10 ratio
ss390 = rsmp("subsampling", repeats = 3, ratio = 0.9)
# 2-repeats 5-fold CV
rcv25 = rsmp("repeated_cv", repeats = 2, folds = 5)

When a "Resampling" object is constructed, it is simply a definition for how the data
splitting process will be performed on the task when running the resampling strategy. How-
ever, it is possible to manually instantiate a resampling strategy, i.e., generate all train-
test splits, by calling the $instantiate()

$instantiate()
method on a given task. So carrying on our

tsk("penguins") example we can instantiate the three-fold CV object and then view the
row indices of the data selected for training and testing each fold using $train_set() and
$test_set() respectively:

https://mlr3.mlr-org.com/reference/mlr_resamplings.html
https://mlr3.mlr-org.com/reference/Resampling.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
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cv3$instantiate(tsk_penguins)
# first 5 observations in first training set
cv3$train_set(1)[1:5]

[1] 1 4 5 8 16

# first 5 observations in third test set
cv3$test_set(3)[1:5]

[1] 2 6 10 13 19

When the aim is to fairly compare multiple learners, best practice dictates that all learners
being compared use the same training data to build a model and that they use the same test
data to evaluate the model performance. Resampling strategies are instantiated automat-
ically for you when using the resample() method, which we will discuss next. Therefore,
manually instantiating resampling strategies is rarely required but might be useful for de-
bugging or digging deeper into a model’s performance.

3.2.2 Resampling Experiments
The resample() resample()function takes a given Task, Learner, and Resampling object to run
the given resampling strategy. resample() repeatedly fits a model on training sets, makes
predictions on the corresponding test sets and stores them in a ResampleResult

ResampleResult
object,

which contains all the information needed to estimate the generalization performance.

rr = resample(tsk_penguins, lrn_rpart, cv3)
rr

<ResampleResult> with 3 resampling iterations
task_id learner_id resampling_id iteration prediction_test
penguins classif.rpart cv 1 <PredictionClassif>
penguins classif.rpart cv 2 <PredictionClassif>
penguins classif.rpart cv 3 <PredictionClassif>
2 variable(s) not shown: [warnings, errors]

Each row of the output corresponds to one of the three iterations/folds. As with Prediction
objects, we can calculate the score for each iteration with $score():

acc = rr$score(msr("classif.ce"))
acc[, .(iteration, classif.ce)]

iteration classif.ce
1: 1 0.06087
2: 2 0.05217
3: 3 0.07018

Evaluating Train Sets

By default, $score() evaluates the performance in the test sets in each iteration,
however, you could evaluate the train set performance, see ?@sec-valid-tuning.

https://mlr3.mlr-org.com/reference/resample.html
https://mlr3.mlr-org.com/reference/Resampling.html
https://mlr3.mlr-org.com/reference/ResampleResult.html
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While $score() returns the performance in each evaluation, $aggregate()$aggregate() , returns the
aggregated score across all resampling iterations.

rr$aggregate(msr("classif.ce"))

classif.ce
0.06107

By default, the majority of measures will aggregate scores using a macro average, which
first calculates the measure in each resampling iteration separately, and then averages these
scores across all iterations. However, it is also possible to aggregate scores using a micro
average, which pools predictions across resampling iterations into one Prediction object
and then computes the measure on this directly:

rr$aggregate(msr("classif.ce", average = "micro"))

classif.ce
0.06105

We can see a small difference between the two methods. Classification error is a decompos-
able loss (Section 3.1), in fact, if the test sets all had the same size then the micro and
macro methods would be identical (see box below). For errors like AUC, which are defined
across the set of observations, the difference between micro- and macro-averaging will be
larger. The default type of aggregation method can be found by querying the $average
field of a Measure object.

Macro- and Micro-Averaging

As a simple example to explain macro- and micro-averaging, consider the difference
between taking the mean of a vector (micro) compared to the mean of two group-wise
means (macro):

# macro
mean(mean(c(3, 5, 9)), mean(c(1, 5)))

[1] 5.667

# micro
mean(c(3, 5, 9, 1, 5))

[1] 4.6
In the example shown in the main text where we used tsk("penguins"), there is a
difference in the classification error between micro and macro methods because the
dataset has 344 rows, which is not divisible by three (the number of folds), hence the
test sets are not of an equal size.
Note that the terms “macro-averaging” and “micro-averaging” are not used consis-
tently in the literature, and sometimes refer to different concepts, e.g., the way in
which the performance is aggregated across classes in a multi-class classification task.

The aggregated score returned by $aggregate() estimates the generalization performance
of our selected learner on the given task using the resampling strategy defined in the

https://mlr3.mlr-org.com/reference/Prediction.html
https://mlr3.mlr-org.com/reference/Measure.html
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Resampling object. While we are usually interested in this aggregated score, it can be
useful to look at the individual performance values of each resampling iteration (as re-
turned by the $score() method) as well, e.g., to see if any of the iterations lead to very
different performance results. Figure 3.4 visualizes the relationship between $score() and
$aggregate() for a small example based on the "penguins" task.

Figure 3.4: An example of the difference between $score() and $aggregate(): The former
aggregates predictions to a single score within each resampling iteration, and the latter
aggregates scores across all resampling iterations.

To visualize the resampling results, you can use the autoplot.ResampleResult() function
to plot scores across folds as boxplots or histograms (Figure 3.5). Histograms can be useful to
visually gauge the variance of the performance results across resampling iterations, whereas
boxplots are often used when multiple learners are compared side-by-side (see Section 3.3).

rr = resample(tsk_penguins, lrn_rpart, rsmp("cv", folds = 10))
autoplot(rr, measure = msr("classif.acc"), type = "boxplot")
autoplot(rr, measure = msr("classif.acc"), type = "histogram")

3.2.3 ResampleResult Objects
As well as being useful for estimating the generalization performance, the ResampleResult
object can also be used for model inspection. We can use the $predictions() method to
obtain a list of Prediction objects corresponding to the predictions from each resampling
iteration. This can be used to analyze the predictions of individual intermediate models
from each resampling iteration. To understand the class better, we use it here to manually
compute a macro averaged performance estimate.

https://mlr3viz.mlr-org.com/reference/autoplot.ResampleResult.html
https://mlr3.mlr-org.com/reference/ResampleResult.html
https://mlr3.mlr-org.com/reference/Prediction.html
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Figure 3.5: Boxplot and Histogram of accuracy scores.

# list of prediction objects
rrp = rr$predictions()
# print first two
rrp[1:2]

[[1]]
<PredictionClassif> for 35 observations:
row_ids truth response

20 Adelie Chinstrap
21 Adelie Adelie
33 Adelie Adelie

--- --- ---
307 Chinstrap Adelie
322 Chinstrap Chinstrap
333 Chinstrap Chinstrap

[[2]]
<PredictionClassif> for 35 observations:
row_ids truth response

8 Adelie Adelie
41 Adelie Adelie
44 Adelie Chinstrap

--- --- ---
309 Chinstrap Adelie
312 Chinstrap Chinstrap
331 Chinstrap Adelie

# macro averaged performance
mean(sapply(rrp, function(.x) .x$score()))

[1] 0.05529

The $prediction() method can be used to extract a single Prediction object that com-
bines the predictions of each intermediate model across all resampling iterations. The com-
bined prediction object can, for example, be used to manually compute a micro-averaged
performance estimate (see Section 3.2.2 for how to you can micro-average more conve-
niently).
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prediction = rr$prediction()
prediction

<PredictionClassif> for 344 observations:
row_ids truth response

20 Adelie Chinstrap
21 Adelie Adelie
33 Adelie Adelie

--- --- ---
330 Chinstrap Chinstrap
337 Chinstrap Gentoo
340 Chinstrap Gentoo

prediction$score()

classif.ce
0.05523

By default, the intermediate models produced at each resampling iteration are discarded
after the prediction step to reduce memory consumption of the ResampleResult object
(only the predictions are required to calculate most performance measures). However, it can
sometimes be useful to inspect, compare, or extract information from these intermediate
models. We can configure the resample() function to keep the fitted intermediate models
by setting store_models = TRUE. Each model trained in a specific resampling iteration
can then be accessed via $learners[[i]]$model, where i refers to the i-th resampling
iteration:

rr = resample(tsk_penguins, lrn_rpart, cv3, store_models = TRUE)
# get the model from the first iteration
rr$learners[[1]]$model

n= 229

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 229 122 Adelie (0.46725 0.18777 0.34498)
2) bill_length< 42.35 98 0 Adelie (1.00000 0.00000 0.00000) *
3) bill_length>=42.35 131 52 Gentoo (0.06870 0.32824 0.60305)
6) island=Dream,Torgersen 50 7 Chinstrap (0.14000 0.86000 0.00000)
12) island=Torgersen 7 0 Adelie (1.00000 0.00000 0.00000) *
13) island=Dream 43 0 Chinstrap (0.00000 1.00000 0.00000) *
7) island=Biscoe 81 2 Gentoo (0.02469 0.00000 0.97531) *

In this example, we could then inspect the most important variables in each iteration to
help us learn more about the respective fitted models:

# print 2nd and 3rd iteration
lapply(rr$learners[2:3], function(x) x$model$variable.importance)

[[1]]

https://mlr3.mlr-org.com/reference/resample.html
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bill_length flipper_length bill_depth body_mass
84.81 80.59 67.52 57.39
island
49.11

[[2]]
flipper_length bill_length bill_depth island

88.62 82.10 66.59 61.50
body_mass

60.37

3.2.4 Custom Resampling

This section covers advanced ML or technical details.

Sometimes it is necessary to perform resampling with custom splits, e.g., to reproduce
results reported in a study with pre-defined folds.

A custom holdout resampling strategy can be constructed using rsmp("custom"), where
the row IDs of the observations used for training and testing must be defined manually
when instantiated with a task. In the example below, we first construct a custom holdout
resampling strategy by manually assigning row IDs to the $train and $test fields, then
construct a resampling strategy with two iterations by passing row IDs as list elements:

rsmp_custom = rsmp("custom")

# resampling strategy with two iterations
train_sets = c(1:5, 153:158, 277:280)
rsmp_custom$instantiate(tsk_penguins,
train = list(train_sets, train_sets + 5),
test = list(train_sets + 15, train_sets + 25)

)
resample(tsk_penguins, lrn_rpart, rsmp_custom)$prediction()

<PredictionClassif> for 30 observations:
row_ids truth response

16 Adelie Gentoo
17 Adelie Gentoo
18 Adelie Gentoo

--- --- ---
303 Chinstrap Gentoo
304 Chinstrap Gentoo
305 Chinstrap Gentoo

A custom cross-validation strategy can be more efficiently constructed with
rsmp("custom_cv"). In this case, we now have to specify either a custom factor
variable or a factor column from the data to determine the folds. In the example below,
we use a smaller version of tsk("penguins") and instantiate a custom two-fold CV
strategy using a factor variable called folds where the first and third rows are used as
the test set in Fold 1, and the second and fourth rows are used as the test set in Fold 2:
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tsk_small = tsk("penguins")$filter(c(1, 100, 200, 300))
rsmp_customcv = rsmp("custom_cv")
folds = as.factor(c(1, 2, 1, 2))
rsmp_customcv$instantiate(tsk_small, f = folds)
resample(tsk_small, lrn_rpart, rsmp_customcv)$predictions()

[[1]]
<PredictionClassif> for 2 observations:
row_ids truth response

1 Adelie Adelie
200 Gentoo Adelie

[[2]]
<PredictionClassif> for 2 observations:
row_ids truth response

100 Adelie Adelie
300 Chinstrap Adelie

3.2.5 Stratification and Grouping

This section covers advanced ML or technical details.

Using column roles (Section 2.6), it is possible to group or stratify observations according
to a particular column in the data. We will look at each of these in turn.

Grouped Resampling

Keeping observations together when the data is split can be useful, and sometimes essential,
during resampling – spatial analysis (Section 13.5) is a prominent example, as observations
belong to natural groups (e.g., countries). When observations belong to groups, we need
to ensure all observations of the same group belong to either the training set or the test
set to prevent potential leakage of information between training and testing. For example,
in a longitudinal study, measurements are taken from the same individual at multiple time
points. If we do not group these, we might overestimate the model’s generalization capability
to unseen individuals, because observations of the same individuals might simultaneously
be in the train and test set. In this context, the leave-one-out cross-validation strategy can
be coarsened to the “leave-one-object-out” cross-validation strategy, where all observations
associated with a certain group are left out (Figure 3.6).

The "group" column role allows us to specify the column in the data that defines the group
structure of the observations. In the following code, we construct a leave-one-out resampling
strategy, assign the "group" role to the ‘year’ column of tsk("penguins"), instantiate the
resampling strategy, and finally show how the years are nicely separated in the first fold.

rsmp_loo = rsmp("loo")
tsk_grp = tsk("penguins")
tsk_grp$set_col_roles("year", "group")
rsmp_loo$instantiate(tsk_grp)
table(tsk_grp$data(rows = rsmp_loo$train_set(1), cols = "year"))
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Figure 3.6: Illustration of the train-test splits of a leave-one-object-out cross-validation with
3 groups of observations (highlighted by different colors).

year
2007 2008
110 114

table(tsk_grp$data(rows = rsmp_loo$test_set(1), cols = "year"))

year
2009
120

Other cross-validation techniques work in a similar way, where folds are determined at a
group level (as opposed to an observation level).

Stratified Sampling

Stratified sampling ensures that one or more discrete features within the training and test
sets will have a similar distribution as in the original task containing all observations. This
is especially useful when a discrete feature is highly imbalanced and we want to make sure
that the distribution of that feature is similar in each resampling iteration (Figure 3.7).
We can also stratify on the target feature to ensure that each intermediate model is fit
on training data where the class distribution of the target is representative of the actual
task, this is useful to ensure target classes are not strongly under-represented by random
chance in individual resampling iterations, which would lead to degenerate estimations of
the generalization performance.

Unlike grouping, it is possible to stratify by multiple discrete features using the "stratum"
column role (Section 2.6). In this case, strata would be formed out of each combination of
the stratified features, e.g., for two stratified features A and B with levels Aa, Ab; Ba, Bb
respectively then the created stratum would have the levels AaBa, AaBb, AbBa, AbBb.

tsk("penguins") displays imbalance in the species column, as can be seen in the output
below:
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Figure 3.7: Illustration of a three-fold cross-validation with stratification for an imbalanced
binary classification task with a majority class that is about twice as large as the minority
class. In each resampling iteration, the class distribution from the available data is preserved
(which is not necessarily the case for cross-validation without stratification).

prop.table(table(tsk_penguins$data(cols = "species")))

species
Adelie Chinstrap Gentoo
0.4419 0.1977 0.3605

Without specifying a "stratum" column role, the species column may have quite different
class distributions across the CV folds, as can be seen in the example below.

rsmp_cv10 = rsmp("cv", folds = 10)
rsmp_cv10$instantiate(tsk_penguins)

fold1 = prop.table(table(tsk_penguins$data(rows = rsmp_cv10$test_set(1),
cols = "species")))

fold2 = prop.table(table(tsk_penguins$data(rows = rsmp_cv10$test_set(2),
cols = "species")))

rbind("Fold 1" = fold1, "Fold 2" = fold2)

Adelie Chinstrap Gentoo
Fold 1 0.6286 0.1143 0.2571
Fold 2 0.5143 0.1714 0.3143

We can see across folds how Chinstrap is represented quite differently (0.11 vs. 0.17)

When imbalance is severe, minority classes might not occur in the training sets entirely.
Consequently, the intermediate models within these resampling iterations will never predict
the missing class, resulting in a misleading performance estimate for any resampling strategy
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without stratification. The code below uses species as "stratum" column role to illustrate
that the distribution of species in each test set will closely match the original distribution:

tsk_str = tsk("penguins")
# set species to have both the 'target' and 'stratum' column role
tsk_str$set_col_roles("species", c("target", "stratum"))
rsmp_cv10$instantiate(tsk_str)

fold1 = prop.table(table(tsk_str$data(rows = rsmp_cv10$test_set(1),
cols = "species")))

fold2 = prop.table(table(tsk_str$data(rows = rsmp_cv10$test_set(2),
cols = "species")))

rbind("Fold 1" = fold1, "Fold 2" = fold2)

Adelie Chinstrap Gentoo
Fold 1 0.4444 0.1944 0.3611
Fold 2 0.4444 0.1944 0.3611

You can view the observations that fall into each stratum using the $strata field of a Task
object, this can be particularly useful when we are interested in multiple strata:

tsk_str$set_col_roles("year", "stratum")
tsk_str$strata

N row_id
1: 50 1,2,3,4,5,6,...
2: 50 51,52,53,54,55,56,...
3: 52 101,102,103,104,105,106,...
4: 34 153,154,155,156,157,158,...
5: 46 187,188,189,190,191,192,...
6: 44 233,234,235,236,237,238,...
7: 26 277,278,279,280,281,282,...
8: 18 303,304,305,306,307,308,...
9: 24 321,322,323,324,325,326,...

# N above matches with numbers in table below
table(tsk_penguins$data(cols = c("species", "year")))

year
species 2007 2008 2009
Adelie 50 50 52
Chinstrap 26 18 24
Gentoo 34 46 44
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3.3 Benchmarking
Benchmarking in supervised machine learning refers to the comparison of different learners
on one or more tasks. When comparing multiple learners on a single task or on a domain
consisting of multiple similar tasks, the main aim is often to rank the learners according to
a pre-defined performance measure and to identify the best-performing learner for the con-
sidered task or domain. When comparing multiple learners on multiple tasks, the main aim
is often more of a scientific nature, e.g., to gain insights into how different learners perform
in different data situations or whether there are certain data properties that heavily affect
the performance of certain learners (or certain hyperparameters of learners). It is common
(and good) practice for algorithm designers to analyze the generalization performance or
runtime of a newly proposed learning algorithm in comparison to existing learners in a
benchmark experiment. Since benchmarks usually consist of many evaluations that can be
run independently of each other, mlr3 offers the possibility of parallelizing them automat-
ically, which we demonstrate in Section 10.1.2. In this section, we will focus on the basic
setup of benchmark experiments that will be applicable in the majority of use cases, in
Chapter 11 we will look at more complex, large-scale, benchmark experiments.

3.3.1 benchmark()
Benchmark experiments in mlr3 are conducted with benchmark(), which simply runs
resample() on each task and learner separately, then collects the results. The provided
resampling strategy is automatically instantiated on each task to ensure that all learners
are compared against the same training and test data.

To use the benchmark() function we first call benchmark_grid(), which constructs an
exhaustive design to describe all combinations of the learners, tasks and resamplings to be
used in a benchmark experiment, and instantiates the resampling strategies. By example,
below we set up a design to see if a random forest, decision tree, or featureless baseline
(Section 2.2.4), performs best across two classification tasks.

tasks = tsks(c("german_credit", "sonar"))
learners = lrns(c("classif.rpart", "classif.ranger",
"classif.featureless"), predict_type = "prob")

rsmp_cv5 = rsmp("cv", folds = 5)

design = benchmark_grid(tasks, learners, rsmp_cv5)
head(design)

task learner resampling
1: german_credit classif.rpart cv
2: german_credit classif.ranger cv
3: german_credit classif.featureless cv
4: sonar classif.rpart cv
5: sonar classif.ranger cv
6: sonar classif.featureless cv

The resulting design is essentially just a data.table, which can be modified if you want
to remove particular combinations or could even be created from scratch without the

https://mlr3.mlr-org.com/reference/benchmark.html
https://mlr3.mlr-org.com/reference/resample.html
https://mlr3.mlr-org.com/reference/benchmark_grid.html
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benchmark_grid() function. Note that this data.table has list columns that contain R6
objects of tasks, learners, and resampling instances.

Reproducibility When Using benchmark_grid()

By default, benchmark_grid() instantiates the resamplings on the tasks, which means
that concrete train-test splits are generated. Since this process is stochastic, it is
necessary to set a seed before calling benchmark_grid() to ensure reproducibility of
the data splits.

The constructed benchmark design can then be passed to benchmark() to run the experi-
ment and the result is a BenchmarkResult object:

bmr = benchmark(design)
bmr

<BenchmarkResult> of 30 rows with 6 resampling runs
nr task_id learner_id resampling_id iters warnings
1 german_credit classif.rpart cv 5 0
2 german_credit classif.ranger cv 5 0
3 german_credit classif.featureless cv 5 0
4 sonar classif.rpart cv 5 0
5 sonar classif.ranger cv 5 0
6 sonar classif.featureless cv 5 0

1 variable(s) not shown: [errors]

As benchmark() is just an extension of resample(), we can once again use $score(), or
$aggregate() depending on your use-case, though note that in this case $score() will
return results over each fold of each learner/task/resampling combination.

bmr$score()[c(1, 7, 13), .(iteration, task_id, learner_id, classif.ce)]

iteration task_id learner_id classif.ce
1: 1 german_credit classif.rpart 0.245
2: 2 german_credit classif.ranger 0.170
3: 3 german_credit classif.featureless 0.315

bmr$aggregate()[, .(task_id, learner_id, classif.ce)]

task_id learner_id classif.ce
1: german_credit classif.rpart 0.2620
2: german_credit classif.ranger 0.2220
3: german_credit classif.featureless 0.3000
4: sonar classif.rpart 0.3365
5: sonar classif.ranger 0.1871
6: sonar classif.featureless 0.5388

This would conclude a basic benchmark experiment where you can draw tentative conclu-
sions about model performance, in this case we would possibly conclude that the random
forest is the best of all three models on each task. We draw conclusions cautiously here as

https://mlr3.mlr-org.com/reference/benchmark_grid.html
https://mlr3.mlr-org.com/reference/BenchmarkResult.html
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we have not run any statistical tests or included standard errors of measures, so we cannot
definitively say if one model outperforms the other.

As the results of $score() and $aggregate() are returned in a data.table, you can post-
process and analyze the results in any way you want. A common mistake is to average the
learner performance across all tasks when the tasks vary significantly. This is a mistake as
averaging the performance will miss out important insights into how learners compare on
‘easier’ or more ‘difficult’ predictive problems. A more robust alternative to compare the
overall algorithm performance across multiple tasks is to compute the ranks of each learner
on each task separately and then calculate the average ranks. This can provide a better
comparison as task-specific ‘quirks’ are taken into account by comparing learners within
tasks before comparing them across tasks. However, using ranks will lose information about
the numerical differences between the calculated performance scores. Analysis of benchmark
experiments, including statistical tests, is covered in more detail in Section 11.3.

3.3.2 BenchmarkResult Objects
A BenchmarkResult object is a collection of multiple ResampleResult objects.

bmrdt = as.data.table(bmr)
bmrdt[1:2, .(task, learner, resampling, iteration)]

task learner
1: <TaskClassif:german_credit> <LearnerClassifRpart:classif.rpart>
2: <TaskClassif:german_credit> <LearnerClassifRpart:classif.rpart>
2 variable(s) not shown: [resampling, iteration]

The contents of a BenchmarkResult and ResampleResult (Section 3.2.3) are almost iden-
tical and the stored ResampleResults can be extracted via the $resample_result(i)
method, where i is the index of the performed resample experiment. This al-
lows us to investigate the extracted ResampleResult and individual resampling it-
erations as shown in Section 3.2, as well as the predictions from each fold with
$resample_result(i)$predictions().

rr1 = bmr$resample_result(1)
rr1

<ResampleResult> with 5 resampling iterations
task_id learner_id resampling_id iteration prediction_test

german_credit classif.rpart cv 1 <PredictionClassif>
german_credit classif.rpart cv 2 <PredictionClassif>
german_credit classif.rpart cv 3 <PredictionClassif>
german_credit classif.rpart cv 4 <PredictionClassif>
german_credit classif.rpart cv 5 <PredictionClassif>
2 variable(s) not shown: [warnings, errors]

rr2 = bmr$resample_result(2)

In addition, as_benchmark_result() can be used to convert objects from ResampleResult
to BenchmarkResult. The c()-method can be used to combine multiple BenchmarkResult
objects, which can be useful when conducting experiments across multiple machines:

https://mlr3.mlr-org.com/reference/BenchmarkResult.html
https://mlr3.mlr-org.com/reference/ResampleResult.html
https://mlr3.mlr-org.com/reference/as_benchmark_result.html
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bmr1 = as_benchmark_result(rr1)
bmr2 = as_benchmark_result(rr2)

c(bmr1, bmr2)

<BenchmarkResult> of 10 rows with 2 resampling runs
nr task_id learner_id resampling_id iters warnings errors
1 german_credit classif.rpart cv 5 0 0
2 german_credit classif.ranger cv 5 0 0

Boxplots are most commonly used to visualize benchmark experiments as they can intu-
itively summarize results across tasks and learners simultaneously.

autoplot(bmr, measure = msr("classif.acc"))
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Figure 3.8: Boxplots of accuracy scores for each learner across resampling iterations and the
three tasks. Random forests (lrn("classif.ranger")) consistently outperforms the other
learners.

3.4 Evaluation of Binary Classifiers
In Section 2.5.3 we touched on the concept of a confusion matrix and how it can be used to
break down classification errors in more detail. In this section, we will look at specialized
performance measures for binary classification in more detail. We will first return to the
confusion matrix and discuss measures that can be derived from it and then will look at
ROC analysis which builds on these measures. See Chapters 7 and 8 of Provost and Fawcett
(2013) for a more detailed introduction to ROC measures.
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3.4.1 Confusion Matrix
To recap, a confusion matrix summarizes the following quantities in a two-dimensional
contingency table (see also Figure 3.9):

• True positives (TPs): Positive instances that are correctly classified as positive.
• True negatives (TNs): Negative instances that are correctly classified as negative.
• False positives (FPs): Negative instances that are incorrectly classified as positive.
• False negatives (FNs): Positive instances that are incorrectly classified as negative.

Different applications may have a particular interest in one (or multiple) of the aforemen-
tioned quantities. For example, the tsk("spam") classification task is concerned with clas-
sifying if mail is spam (positive class) or not (negative class). In this case, we are likely to
accept FNs (some spam classified as genuine mail) as long as we have a low number of FPs
(genuine and possibly important mail classified as spam). In another example, say we are
predicting if a travel bag contains a weapon (positive class) or not (negative class) at an
airport. This classifier must have a very high number of TPs (as FNs are not acceptable at
all), even if this comes at the expense of more FPs (false alarms).

As we saw in Section 2.5.3, it is possible for a classifier to have a good classification accu-
racy but to overlook the nuances provided by a full confusion matrix, as in the following
tsk("german_credit") example:

tsk_german = tsk("german_credit")
lrn_ranger = lrn("classif.ranger", predict_type = "prob")
splits = partition(tsk_german, ratio = 0.8)

lrn_ranger$train(tsk_german, splits$train)
prediction = lrn_ranger$predict(tsk_german, splits$test)
prediction$score(msr("classif.acc"))

classif.acc
0.795

prediction$confusion

truth
response good bad

good 131 34
bad 7 28

The classification accuracy only takes into account the TPs and TNs, whereas the confusion
matrix provides a more holistic picture of the classifier’s performance.

On their own, the absolute numbers in a confusion matrix can be less useful when there is
class imbalance. Instead, several normalized measures can be derived (Figure 3.9):

• True Positive Rate (TPR), Sensitivity or Recall: How many of the true positives
did we predict as positive?

• True Negative Rate (TNR) or Specificity: How many of the true negatives did we
predict as negative?

• False Positive Rate (FPR), or 1− Specificity: How many of the true negatives did
we predict as positive?
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• Positive Predictive Value (PPV) or Precision: If we predict positive how likely is it
a true positive?

• Negative Predictive Value (NPV): If we predict negative how likely is it a true
negative?

• Accuracy (ACC): The proportion of correctly classified instances out of the total number
of instances.

• F1-score: The harmonic mean of precision and recall, which balances the trade-off be-
tween precision and recall. It is calculated as 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 .

True Class y

+ −

+ TP FP PPV = TP
TP+FP

− FN TN NPV = TN
FN+TN

TPR = TP
TP+FN TNR = TN

FP+TN ACC = TP+TN
TP+FP+FN+TN
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1Figure 3.9: Binary confusion matrix of ground truth class vs. predicted class.

The mlr3measures package allows you to compute several common confusion matrix-based
measures using the confusion_matrix() function:

mlr3measures::confusion_matrix(truth = prediction$truth,
response = prediction$response, positive = tsk_german$positive)

truth
response good bad

good 131 34
bad 7 28

acc : 0.7950; ce : 0.2050; dor : 15.4118; f1 : 0.8647
fdr : 0.2061; fnr : 0.0507; fomr: 0.2000; fpr : 0.5484
mcc : 0.4880; npv : 0.8000; ppv : 0.7939; tnr : 0.4516
tpr : 0.9493

We now have a better idea of the random forest predictions on tsk("german_credit"),
in particular, the false positive rate is quite high. It is generally difficult to achieve a high
TPR and low FPR simultaneously because there is often a trade-off between the two rates.
When a binary classifier predicts probabilities instead of discrete classes (predict_type
= "prob"), we could set a threshold to cut off the probabilities to change how we assign
observations to the positive/negative class (see Section 2.5.4). Increasing the threshold for
identifying the positive cases, leads to a higher number of negative predictions, fewer positive
predictions, and therefore a lower (and better) FPR but a lower (and worse) TPR – the
reverse holds if we lower the threshold. Instead of arbitrarily changing a threshold to ‘game’
these two numbers, a more robust way to tradeoff between TPR and FPR is to use ROC
analysis, discussed next.

https://cran.r-project.org/package=mlr3measures
https://www.rdocumentation.org/packages/mlr3measures/topics/confusion_matrix
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3.4.2 ROC Analysis
ROC (Receiver Operating Characteristic) analysis is widely used to evaluate binary classi-
fiers by visualizing the trade-off between the TPR and the FPR.

The ROC curve is a line graph with TPR on the y-axis and the FPR on the x-axis. To
understand the usefulness of this curve, first consider the simple case of a hard labeling
classifier (predict_type = "response") that classifies observations as either positive or
negative. This classifier would be represented as a single point in the ROC space (see
Figure 3.10, panel (a)). The best classifier would lie on the top-left corner where the TPR
is 1 and the FPR is 0. Classifiers on the diagonal predict class labels randomly (with
different class proportions). For example, if each positive instance will be randomly classified
(ignoring features) with 25% as the positive class, we would obtain a TPR of 0.25. If we
assign each negative instance randomly to the positive class, we would have an FPR of 0.25.
In practice, we should never obtain a classifier below the diagonal and a point in the ROC
space below the diagonal might indicate that the positive and negative class labels have
been switched by the classifier.

Warning in geom_text(aes(x = 0.5, y = 0.5, hjust = 0.5, vjust = -0.5, label = "random classifiers"), : All aesthetics have length 1, but the data has 2 rows.
i Please consider using `annotate()` or provide this layer with data
containing a single row.

Warning in geom_text(aes(x = 0.5, y = 0.5, hjust = 0.5, vjust = -0.5, label = "baseline"), : All aesthetics have length 1, but the data has 2 rows.
i Please consider using `annotate()` or provide this layer with data
containing a single row.
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Figure 3.10: Panel (a): ROC space with best discrete classifier, two baseline classifiers – one
that always predicts the positive class and one that never predicts the positive class – and
three ‘real’ classifiers C1, C2, C3. We cannot say if C1 or C3 is better than the other as both
are better in one metric. C2 is clearly worse than C1 and C3, which are better in at least
one metric than C2 while not being worse in any other metric. Panel (b): ROC curves of the
best classifier (AUC = 1), of a random guessing classifier (AUC = 0.5), and the classifiers
C1, C3, and C2.

Now consider classifiers that predict probabilities instead of discrete classes. Using different
thresholds to cut off predicted probabilities and assign them to the positive and negative
class will lead to different TPRs and FPRs and by plotting these values across different
thresholds we can characterize the behavior of a binary classifier – this is the ROC curve.
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For example, we can use the previous Prediction object to compute all possible TPR and
FPR combinations by thresholding the predicted probabilities across all possible thresh-
olds, which is exactly what mlr3viz::autoplot.PredictionClassif will do when type =
"roc" is selected:

autoplot(prediction, type = "roc")
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Figure 3.11: ROC-curve based on the german_credit dataset and the classif.ranger
random forest learner. Recall FPR = 1− Specificity and TPR = Sensitivity.

A natural performance measure that can be derived from the ROC curve is the area under
the curvearea under

the curve
(AUC), implemented in msr("classif.auc"). The AUC can be interpreted as the

probability that a randomly chosen positive instance has a higher predicted probability of
belonging to the positive class than a randomly chosen negative instance. Therefore, higher
values (closer to 1) indicate better performance. Random classifiers (such as the featureless
baseline) will always have an AUC of (approximately, when evaluated empirically) 0.5 (see
Figure 3.10, panel (b)).

prediction$score(msr("classif.auc"))

classif.auc
0.8319

Evaluating our random forest on tsk("german_credit") results in an AUC of around 0.83,
which is acceptable but could be better.

Multiclass ROC and AUC

Extensions of ROC analysis for multiclass classifiers exist (see e.g., Hand and Till
2001) but we only cover the more common binary classification case in this book.
Generalizations of the AUC measure to multiclass classification are implemented in
mlr3, see msr("classif.mauc_au1p").

We can also plot the precision-recall curvePrecision-
recall Curve

(PRC) which visualizes the PPV/precision
vs. TPR/recall. The main difference between ROC curves and PR curves is that the number
of true-negatives are ignored in the latter. This can be useful in imbalanced populations
where the positive class is rare, and where a classifier with high TPR may still not be very

https://mlr3.mlr-org.com/reference/Prediction.html
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informative and have low PPV. See Davis and Goadrich (2006) for a detailed discussion
about the relationship between the PRC and ROC curves.

autoplot(prediction, type = "prc")
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Figure 3.12: Precision-Recall curve based on tsk("german_credit") and
lrn("classif.ranger").

Another useful way to think about the performance of a classifier is to visualize the rela-
tionship of a performance metric over varying thresholds, for example, see Figure 3.13 to
inspect the FPR and accuracy across all possible thresholds:

autoplot(prediction, type = "threshold", measure = msr("classif.fpr"))
autoplot(prediction, type = "threshold", measure = msr("classif.acc"))
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Figure 3.13: Comparing threshold and FPR (left) with threshold and accuracy (right) for
the random forest trained on tsk("german_credit").

This visualization would show us that changing the threshold from the default 0.5 to a
higher value like 0.7 would greatly reduce the FPR while reducing accuracy by only a few
percentage points. Depending on the problem at hand, this might be a perfectly desirable
trade-off.

These visualizations are also available for ResampleResult objects. In this case, the predic-
tions of individual resampling iterations are merged before calculating a ROC or PR curve
(micro averaged):

https://mlr3.mlr-org.com/reference/ResampleResult.html
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rr = resample(
task = tsk("german_credit"),
learner = lrn("classif.ranger", predict_type = "prob"),
resampling = rsmp("cv", folds = 5)

)
autoplot(rr, type = "roc")
autoplot(rr, type = "prc")
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Figure 3.14: Comparing ROC (left) and PR curve (right) for a random forest trained on
tsk("german_credit").

Finally, we can visualize ROC/PR curves for a BenchmarkResult to compare multiple
learners on the same Task:

library(patchwork)

design = benchmark_grid(
tasks = tsk("german_credit"),
learners = lrns(c("classif.rpart", "classif.ranger"),

predict_type = "prob"),
resamplings = rsmp("cv", folds = 5)

)
bmr = benchmark(design)
autoplot(bmr, type = "roc") + autoplot(bmr, type = "prc") +
plot_layout(guides = "collect")

3.5 Conclusion
In this chapter, we learned how to estimate the generalization performance of a model via
resampling strategies, from holdout to cross-validation and bootstrap, and how to automate
the comparison of multiple learners in benchmark experiments. We also covered the basics
of performance measures for binary classification, including the confusion matrix, ROC
analysis, and precision-recall curves. These topics are fundamental in supervised learning
and will continue to be built upon throughout this book. In particular, Chapter 4 utilizes
evaluation in automated model tuning to improve performance, in Chapter 11 we look at

https://mlr3.mlr-org.com/reference/BenchmarkResult.html
https://mlr3.mlr-org.com/reference/Task.html
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Figure 3.15: Comparing random forest (green) and decision tree (purple) using ROC and
PR Curves.

large benchmarks and their statistical analysis, and in Chapter 13 we will take a look at
specialized tasks that require different resampling strategies.

Table 3.1: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor/Function Fields/Methods
PredictionClassif classif_lrn$predict() confusion_matrix();

autoplot(some_prediction_classif,
type = "roc")

- partition() -
Resampling rsmp() $instantiate()
ResampleResult resample() $score(); $aggregate();

$predictions();
as_benchmark_result();
autoplot(some_resample_result,
type = "roc")

- benchmark_grid() -
BenchmarkResult benchmark() $aggregate(); $resample_result();

$score();
autoplot(some_benchmark_result,
type = "roc")

3.6 Exercises
1. Apply a repeated cross-validation resampling strategy on tsk("mtcars") and

evaluate the performance of lrn("regr.rpart"). Use five repeats of three folds
each. Calculate the MSE for each iteration and visualize the result. Finally, cal-
culate the aggregated performance score.

https://mlr3.mlr-org.com/reference/PredictionClassif.html
https://www.rdocumentation.org/packages/mlr3measures/topics/confusion_matrix
https://mlr3.mlr-org.com/reference/partition.html
https://mlr3.mlr-org.com/reference/Resampling.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3.mlr-org.com/reference/ResampleResult.html
https://mlr3.mlr-org.com/reference/resample.html
https://mlr3.mlr-org.com/reference/benchmark_grid.html
https://mlr3.mlr-org.com/reference/BenchmarkResult.html
https://mlr3.mlr-org.com/reference/benchmark.html
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2. Use tsk("spam") and five-fold CV to benchmark lrn("classif.ranger"),
lrn("classif.log_reg"), and lrn("classif.xgboost", nrounds = 100)
with respect to AUC. Which learner appears to perform best? How confident
are you in your conclusion? Think about the stability of results and investigate
this by re-rerunning the experiment with different seeds. What can be done to
improve this?

3. A colleague reports a 93.1% classification accuracy using lrn("classif.rpart")
on tsk("penguins_simple"). You want to reproduce their results and ask them
about their resampling strategy. They said they used a custom three-fold CV with
folds assigned as factor(task$row_ids %% 3). See if you can reproduce their
results.

4. (*) Program your own ROC plotting function without using mlr3’s autoplot()
function. The signature of your function should be my_roc_plot(task,
learner, train_indices, test_indices). Your function should use the
$set_threshold() method of Prediction, as well as mlr3measures.
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Machine learning algorithms usually include parameters and hyperparameters Hyperparam-
eters

. Parameters
are the model coefficients or weights or other information that are determined by the learning
algorithm based on the training data. In contrast, hyperparameters, are configured by the
user and determine how the model will fit its parameters, i.e., how the model is built.
Examples include setting the number of trees in a random forest, penalty settings in support
vector machines, or the learning rate in a neural network.

The goal of hyperparameter optimization Hyperparam-
eter
Optimiza-
tion

(HPO) or model tuning is to find the optimal
configuration of hyperparameters of a machine learning algorithm for a given task. There is
no closed-form mathematical representation (nor analytic gradient information) for model-
agnostic HPO. Instead, we follow a black box optimization approach: a machine learning
algorithm is configured with values chosen for one or more hyperparameters, this algorithm
is then evaluated (using a resampling method) and its performance is measured. This pro-
cess is repeated with multiple configurations and finally, the configuration with the best
performance is selected (Figure 4.1). HPO closely relates to model evaluation (Chapter 3)
as the objective is to find a hyperparameter configuration that optimizes the generalization
performance. Broadly speaking, we could think of finding the optimal model configuration
in the same way as selecting a model from a benchmark experiment, where in this case each
model in the experiment is the same algorithm but with different hyperparameter config-
urations. For example, we could benchmark three support vector machines (SVMs) with
three different cost values. However, human trial-and-error is time-consuming, subjective
and often biased, error-prone, and computationally inefficient. Instead, many sophisticated
hyperparameter optimization methods (or ‘tuners’, see Section 4.1.4) have been developed
over the past few decades for robust and efficient HPO. Besides simple approaches such as a
random search or grid search, most hyperparameter optimization methods employ iterative
techniques that propose different configurations over time, often exhibiting adaptive be-
havior guided towards potentially optimal hyperparameter configurations. These methods
continually propose new configurations until a termination criterion is met, at which point
the best configuration so far is returned (Figure 4.1). For more general details on HPO and
more theoretical background, we recommend Bischl et al. (2023) and Feurer and Hutter
(2019).

Note that mlr3 never does any automatic hyperparameter optimization that the user did
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not explicitly request.

Figure 4.1: Representation of the hyperparameter optimization loop in mlr3tuning. Blue -
Hyperparameter optimization loop. Purple - Objects of the tuning instance supplied by the
user. Blue-Green - Internally created objects of the tuning instance. Green - Optimization
Algorithm.

4.1 Model Tuning
mlr3tuning is the hyperparameter optimization package of the mlr3 ecosystem. At the
heart of the package are the R6 classes

• TuningInstanceBatchSingleCrit, a tuning ‘instance’ that describes the optimization
problem and store the results; and

• TunerBatch which is used to configure and run optimization algorithms.

In this section, we will cover these classes as well as other supporting functions and classes.
Throughout this section, we will look at optimizing an SVM classifier from e1071 on
tsk("sonar") as a running example.

4.1.1 Learner and Search Space
The tuning process begins by deciding which hyperparameters to tune and what range to
tune them over. The first place to start is therefore picking a learner and looking at the
possible hyperparameters to tune with $param_set:

https://mlr3tuning.mlr-org.com
https://mlr3tuning.mlr-org.com/reference/TuningInstanceBatchSingleCrit.html
https://mlr3tuning.mlr-org.com/reference/TunerBatch.html
https://cran.r-project.org/package=e1071
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as.data.table(lrn("classif.svm")$param_set)[,
.(id, class, lower, upper, nlevels)]

id class lower upper nlevels
1: cachesize ParamDbl -Inf Inf Inf
2: class.weights ParamUty NA NA Inf
3: coef0 ParamDbl -Inf Inf Inf
4: cost ParamDbl 0 Inf Inf
5: cross ParamInt 0 Inf Inf
---
12: nu ParamDbl -Inf Inf Inf
13: scale ParamUty NA NA Inf
14: shrinking ParamLgl NA NA 2
15: tolerance ParamDbl 0 Inf Inf
16: type ParamFct NA NA 2

Given infinite resources, we could tune all hyperparameters jointly, but in reality that is not
possible (or maybe necessary), so usually only a subset of hyperparameters can be tuned.
This subset of possible hyperparameter values to tune over is referred to as the search
space Search

Space
or tuning space. In this example we will tune the numeric regularization and kernel

width hyperparameters, cost and gamma; see the help page for svm() for details. In practice,
search spaces are usually more complex and can require expert knowledge to define them.
Section 4.4 provides more detailed insight into the creation of tuning spaces, including using
mlr3tuningspaces to load predefined search spaces.

Untunable Hyperparameters

In rare cases, parameter sets may include hyperparameters that should not be tuned.
These will usually be ‘technical’ (or ‘control’) parameters that provide information
about how the model is being fit but do not control the training process itself, for
example, the verbose hyperparameter in lrn("classif.ranger") controls how much
information is displayed to the user during training.

For numeric hyperparameters (we will explore others later) one must specify the bounds
to tune over. We do this by constructing a learner and using to_tune() to set the lower
and upper limits for the parameters we want to tune. This function allows us to mark the
hyperparameter as requiring tuning in the specified range.

learner = lrn("classif.svm",
type = "C-classification",
kernel = "radial",
cost = to_tune(1e-1, 1e5),
gamma = to_tune(1e-1, 1)

)
learner

<LearnerClassifSVM:classif.svm>: Support Vector Machine
* Model: -
* Parameters: cost=<RangeTuneToken>, gamma=<RangeTuneToken>,
kernel=radial, type=C-classification

* Packages: mlr3, mlr3learners, e1071

https://www.rdocumentation.org/packages/e1071/topics/svm
https://mlr3tuningspaces.mlr-org.com
https://paradox.mlr-org.com/reference/to_tune.html
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* Predict Types: [response], prob
* Feature Types: logical, integer, numeric
* Properties: multiclass, twoclass

Here we have constructed a classification SVM, lrn("classif.svm"), selected the type
of model as "C-classification", set the kernel to "radial", and specified that we plan
to tune the cost and gamma parameters over the range [0.1, 105] and [0.1, 1] respectively
(though these are usually tuned on a log scale, see Section 4.1.5). Note that calling $train()
on a learner with a tune token (e.g., cost=<RangeTuneToken>) will throw an error.

Now we have decided which hyperparameters to tune, we specify when to stop the tuning
process.

4.1.2 Terminator
mlr3tuning includes many methods to specify when to terminate an algorithm (Ta-
ble 4.1), which are implemented in TerminatorTerminator classes. Terminators are stored in the
mlr_terminators dictionary and are constructed with the sugar function trm()trm() .

Table 4.1: Terminators available in mlr3tuning at the time of publication, their function
call and default parameters. A complete and up-to-date list can be found at https://mlr-
org.com/terminators.html.

Terminator Function call and default parameters
Clock Time trm("clock_time")
Combo trm("combo", any = TRUE)
None trm("none")
Number of Evaluations trm("evals", n_evals = 100, k = 0)
Performance Level trm("perf_reached", level = 0.1)
Run Time trm("run_time", secs = 30)
Stagnation trm("stagnation", iters = 10, threshold = 0)

The most commonly used terminators are those that stop the tuning after a certain time
(trm("run_time")) or a given number of evaluations (trm("evals")). Choosing a runtime
is often based on practical considerations and intuition. Using a time limit can be impor-
tant on compute clusters where a maximum runtime for a compute job may need to be
specified. trm("perf_reached") stops the tuning when a specified performance level is
reached, which can be helpful if a certain performance is seen as sufficient for the practical
use of the model, however, if this is set too optimistically the tuning may never terminate.
trm("stagnation") stops when no progress greater than the threshold has been made
for a set number of iterations. The threshold can be difficult to select as the optimiza-
tion could stop too soon for complex search spaces despite room for (possibly significant)
improvement. trm("none") is used for tuners that control termination themselves and so
this terminator does nothing. Finally, any of these terminators can be freely combined by
using trm("combo"), which can be used to specify if HPO finishes when any (any = TRUE)
terminator is triggered or when all (any = FALSE) are triggered.

4.1.3 Tuning Instance with ti
The tuning instance collects the tuner-agnostic information required to optimize a model,
i.e., all information about the tuning process, except for the tuning algorithm itself. This

https://bbotk.mlr-org.com/reference/Terminator.html
https://bbotk.mlr-org.com/reference/mlr_terminators.html
https://bbotk.mlr-org.com/reference/trm.html
https://mlr-org.com/terminators.html
https://mlr-org.com/terminators.html
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includes the task to tune over, the learner to tune, the resampling method and measure
used to analytically compare hyperparameter optimization configurations, and the termi-
nator to determine when the measure has been optimized ‘enough’. This implicitly defines
a “black box” objective function, mapping hyperparameter configurations to (stochastic)
performance values, to be optimized. This concept will be revisited in Chapter 5.

A tuning instance can be constructed explicitly with the ti() function, or we can tune a
learner with the tune() function, which implicitly creates a tuning instance, as shown in
Section 4.2. We cover the ti() approach first as this allows finer control of tuning and a
more nuanced discussion about the design and use of mlr3tuning.

Continuing our example, we will construct a single-objective tuning problem (i.e., tuning
over one measure) by using the ti() function to create a TuningInstanceBatchSingleCrit,
we will return to multi-objective tuning in Section 5.2.

For this example, we will use three-fold CV and optimize the classification error measure.
Note that in the next section, we will continue our example with a grid search tuner, so we
select trm("none") below as we will want to iterate over the full grid without stopping too
soon.

tsk_sonar = tsk("sonar")

learner = lrn("classif.svm",
cost = to_tune(1e-1, 1e5),
gamma = to_tune(1e-1, 1),
kernel = "radial",
type = "C-classification"

)

instance = ti(
task = tsk_sonar,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("none")

)

instance

<TuningInstanceBatchSingleCrit>
* State: Not optimized
* Objective: <ObjectiveTuningBatch:classif.svm_on_sonar>
* Search Space:

id class lower upper nlevels
1: cost ParamDbl 0.1 1e+05 Inf
2: gamma ParamDbl 0.1 1e+00 Inf
* Terminator: <TerminatorNone>

4.1.4 Tuner
With all the pieces of our tuning problem assembled, we can now decide how to tune our
model. There are multiple Tuner Tunerclasses in mlr3tuning, which implement different HPO

https://mlr3tuning.mlr-org.com/reference/ti.html
https://mlr3tuning.mlr-org.com/reference/tune.html
https://mlr3tuning.mlr-org.com/reference/TuningInstanceBatchSingleCrit.html
https://mlr3tuning.mlr-org.com/reference/Tuner.html
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(or more generally speaking black box optimization) algorithms (Table 4.2).

Table 4.2: Tuning algorithms available in mlr3tuning, their function call and the package
in which the algorithm is implemented. A complete and up-to-date list can be found at
https://mlr-org.com/tuners.html.

Tuner Function call Package
Random Search tnr("random_search") mlr3tuning
Grid Search tnr("grid_search") mlr3tuning
Bayesian Optimization tnr("mbo") mlr3mbo
CMA-ES tnr("cmaes") adagio
Iterated Racing tnr("irace") irace
Hyperband tnr("hyperband") mlr3hyperband
Generalized Simulated Annealing tnr("gensa") GenSA
Nonlinear Optimization tnr("nloptr") nloptr

Search strategies

Grid search and random search (Bergstra and Bengio 2012) are the most basic algorithms
and are often selected first in initial experiments. The idea of grid search is to exhaustively
evaluate every possible combination of given hyperparameter values. Categorical hyperpa-
rameters are usually evaluated over all possible values they can take. Numeric and integer
hyperparameter values are then spaced equidistantly in their box constraints (upper and
lower bounds) according to a given resolution, which is the number of distinct values to try
per hyperparameter. Random search involves randomly selecting values for each hyperpa-
rameter independently from a pre-specified distribution, usually uniform. Both methods are
non-adaptive, which means each proposed configuration ignores the performance of previ-
ous configurations. Due to their simplicity, both grid search and random search can handle
mixed search spaces (i.e., hyperparameters can be numeric, integer, or categorical) as well
as hierarchical search spaces (Section 4.4).

Adaptive algorithms

Adaptive algorithms learn from previously evaluated configurations to find good configu-
rations quickly, examples in mlr3 include Bayesian optimization (also called model-based
optimization), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Iterated Rac-
ing, and Hyperband.

Bayesian optimization (e.g., Snoek, Larochelle, and Adams 2012) describes a family of
iterative optimization algorithms that use a surrogate model to approximate the unknown
function that is to be optimized – in HPO this would be the mapping from a hyperparameter
configuration to the estimated generalization performance. If a suitable surrogate model is
chosen, e.g. a random forest, Bayesian optimization can be quite flexible and even handle
mixed and hierarchical search spaces. Bayesian optimization is discussed in full detail in
Section 5.4.

CMA-ES (Hansen and Auger 2011) is an evolutionary strategy that maintains a probabil-
ity distribution over candidate points, with the distribution represented by a mean vector
and covariance matrix. A new set of candidate points is generated by sampling from this
distribution, with the probability of each candidate being proportional to its performance.
The covariance matrix is adapted over time to reflect the performance landscape. Further

https://mlr-org.com/tuners.html
https://mlr3tuning.mlr-org.com
https://mlr3tuning.mlr-org.com
https://mlr3mbo.mlr-org.com
https://cran.r-project.org/package=adagio
https://cran.r-project.org/package=irace
https://mlr3hyperband.mlr-org.com
https://cran.r-project.org/package=GenSA
https://cran.r-project.org/package=nloptr
https://mlr3.mlr-org.com
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evolutionary strategies are available in mlr3 via the miesmuschel package, however, these
will not be covered in this book.

Racing algorithms work by iteratively discarding configurations that show poor performance,
as determined by statistical tests. Iterated Racing (López-Ibáñez et al. 2016) starts by
‘racing’ down an initial population of randomly sampled configurations from a parameterized
density and then uses the surviving configurations of the race to stochastically update the
density of the subsequent race to focus on promising regions of the search space, and so on.

Multi-fidelity HPO is an adaptive method that leverages the predictive power of computa-
tionally cheap lower fidelity evaluations (i.e., poorer quality predictions such as those arising
from neural networks with a small number of epochs) to improve the overall optimization
efficiency. This concept is used in Hyperband (Li et al. 2018), a popular multi-fidelity hyper-
parameter optimization algorithm that dynamically allocates increasingly more resources
to promising configurations and terminates low-performing ones. Hyperband is discussed in
full detail in Section 5.3.

Other implemented algorithms for numeric search spaces are Generalized Simulated An-
nealing (Xiang et al. 2013; Tsallis and Stariolo 1996) and various nonlinear optimization
algorithms.

Choosing strategies

As a rule of thumb, if the search space is small or does not have a complex structure, grid
search may be able to exhaustively evaluate the entire search space in a reasonable time.
However, grid search is generally not recommended due to the curse of dimensionality –
the grid size ‘blows up’ very quickly as the number of parameters to tune increases – and
insufficient coverage of numeric search spaces. By construction, grid search cannot evalu-
ate a large number of unique values per hyperparameter, which is suboptimal when some
hyperparameters have minimal impact on performance while others do. In such scenarios,
random search is often a better choice as it considers more unique values per hyperparameter
compared to grid search.

For higher-dimensional search spaces or search spaces with more complex structure, more
guided optimization algorithms such as evolutionary strategies or Bayesian optimization
tend to perform better and are more likely to result in peak performance. When choosing
between evolutionary strategies and Bayesian optimization, the cost of function evaluation
is highly relevant. If hyperparameter configurations can be evaluated quickly, evolutionary
strategies often work well. On the other hand, if model evaluations are time-consuming and
the optimization budget is limited, Bayesian optimization is usually preferred, as it is quite
sample efficient compared to other algorithms, i.e., less function evaluations are needed to
find good configurations. Hence, Bayesian optimization is usually recommended for HPO.
While the optimization overhead of Bayesian optimization is comparably large (e.g., in each
iteration, training of the surrogate model and optimizing the acquisition function), this has
less of an impact in the context of relatively costly function evaluations such as resampling
of ML models.

Finally, in cases where the hyperparameter optimization problem involves a meaningful
fidelity parameter (e.g., number of epochs, number of trees, number of boosting rounds) and
where the optimization budget needs to be spent efficiently, multi-fidelity hyperparameter
optimization algorithms like Hyperband may be worth considering. For further details on
different tuners and practical recommendations, we refer to Bischl et al. (2023).

https://cran.r-project.org/package=miesmuschel
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$param_classes and $properties

The $param_classes and $properties fields of a Tuner respectively provide informa-
tion about which classes of hyperparameters can be handled and what properties the
tuner can handle (e.g., hyperparameter dependencies, which are shown in Section 4.4,
or multicriteria optimization, which is presented in Section 5.2):

tnr("random_search")$param_classes

[1] "ParamLgl" "ParamInt" "ParamDbl" "ParamFct"

tnr("random_search")$properties

[1] "dependencies" "single-crit" "multi-crit"

For our SVM example, we will use a grid search with a resolution of five for runtime reasons
here (in practice a larger resolution would be preferred). The resolution is the number
of distinct values to try per hyperparameter, which means in our example the tuner will
construct a 5x5 grid of 25 configurations of equally spaced points between the specified
upper and lower bounds. All configurations will be tried by the tuner (in random order)
until either all configurations are evaluated or the terminator (Section 4.1.2) signals that
the budget is exhausted. For grid and random search tuners, the batch_size parameter
controls how many configurations are evaluated at the same time when parallelization is
enabled (see Section 10.1.3), and also determines how many configurations should be applied
before the terminator should check if the termination criterion has been reached.

tuner = tnr("grid_search", resolution = 5, batch_size = 10)
tuner

<TunerBatchGridSearch>: Grid Search
* Parameters: batch_size=10, resolution=5
* Parameter classes: ParamLgl, ParamInt, ParamDbl, ParamFct
* Properties: dependencies, single-crit, multi-crit
* Packages: mlr3tuning, bbotk

The resolution and batch_size parameters are termed control parametersControl
Parameters

of the tuner,
and other tuners will have other control parameters that can be set, as with learners these
are accessible with $param_set.

tuner$param_set

<ParamSet(3)>
id class lower upper nlevels default value

1: batch_size ParamInt 1 Inf Inf <NoDefault[0]> 10
2: resolution ParamInt 1 Inf Inf <NoDefault[0]> 5
3: param_resolutions ParamUty NA NA Inf <NoDefault[0]> [NULL]

While changing the control parameters of the tuner can improve optimal performance, we
have to take care that is likely the default settings will fit most needs. While it is not possible
to cover all application cases, mlr3tuning’s defaults were chosen to work well in most cases.
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However, some control parameters like batch_size often interact with the parallelization
setup (further described in Section 10.1.3) and may need to be adjusted accordingly.

Triggering the tuning process

Now that we have introduced all our components, we can start the tuning process. To do
this we simply pass the constructed TuningInstanceBatchSingleCrit to the $optimize()
method of the initialized TunerBatch, which triggers the hyperparameter optimization loop
(Figure 4.1).

tuner$optimize(instance)

cost gamma learner_param_vals x_domain classif.ce
1: 25000 0.1 <list[4]> <list[2]> 0.2687

The optimizer returns the best hyperparameter configuration and the corresponding perfor-
mance, this information is also stored in instance$result. The first columns (here cost
and gamma) will be named after the tuned hyperparameters and show the optimal values
from the searched tuning spaces. The $learner_param_vals field of the $result lists the
optimal hyperparameters from tuning, as well as the values of any other hyperparameters
that were set, this is useful for onward model use (Section 4.1.6).

instance$result$learner_param_vals

[[1]]
[[1]]$kernel
[1] "radial"

[[1]]$type
[1] "C-classification"

[[1]]$cost
[1] 25000

[[1]]$gamma
[1] 0.1

The $x_domain field is most useful in the context of hyperparameter transformations, which
we will briefly turn to next.

Overconfident Performance Estimates

A common mistake when tuning is to report the performance estimated on the resam-
pling sets on which the tuning was performed (instance$result$classif.ce) as an
unbiased estimate of the model’s performance and to ignore its optimistic bias. The
correct method is to test the model on more unseen data, which can be efficiently
performed with nested resampling, we will discuss this in Section 4.3.2.

https://mlr3tuning.mlr-org.com/reference/TuningInstanceBatchSingleCrit.html
https://mlr3tuning.mlr-org.com/reference/TunerBatch.html
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4.1.5 Logarithmic Transformations
For many non-negative hyperparameters that have a large upper bound, tuning on a log-
arithmic scale can be more efficient than tuning on a linear scale. By example, consider
sampling uniformly in the interval [log(1𝑒 − 5), log(1𝑒5)] and then exponentiating the out-
come, the histograms in Figure 4.2 show how we are initially sampling within a narrow
range ([−11.5, 11.5]) but then exponentiating results in the majority of points being rela-
tively small but a few being very large.

cost = runif(1000, log(1e-5), log(1e5))
exp_cost = exp(cost)
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(b) Logarithmic scale seen by the learner.

Figure 4.2: Histograms of uniformly sampled values from the interval [log(1𝑒 − 5), log(1𝑒5)]
before (left) and after (right) exponentiation.

To add this transformation to a hyperparameter we simply pass logscale = TRUE to
to_tune().

learner = lrn("classif.svm",
cost = to_tune(1e-5, 1e5, logscale = TRUE),
gamma = to_tune(1e-5, 1e5, logscale = TRUE),
kernel = "radial",
type = "C-classification"

)

instance = ti(
task = tsk_sonar,
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("none")

)

tuner$optimize(instance)

cost gamma learner_param_vals x_domain classif.ce
1: 5.756 -5.756 <list[4]> <list[2]> 0.1925

We can see from this example that using the log transformation improved the hyperparam-
eter search, as classif.ce is smaller.

https://paradox.mlr-org.com/reference/to_tune.html
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Note that the fields cost and gamma show the optimal values before transformation, whereas
x_domain and learner_param_vals contain optimal values after transformation, it is these
latter fields you would take forward for future model use.

instance$result$x_domain

[[1]]
[[1]]$cost
[1] 316.2

[[1]]$gamma
[1] 0.003162

In Section 4.4 we will look at how to implement more complex, custom transformations
for any hyperparameter or combination of hyperparameters. Now we will look at how to
put everything into practice so we can make use of the tuned model (and the transformed
hyperparameters).

4.1.6 Analyzing and Using the Result
Independently of whether you use ti() or tune(), or if you include transformations or not,
the created objects and the output are structurally the same and the instance’s archive lists
all evaluated hyperparameter configurations:

as.data.table(instance$archive)[1:3, .(cost, gamma, classif.ce)]

cost gamma classif.ce
1: -11.51 -11.513 0.5621
2: -11.51 -5.756 0.5621
3: -11.51 11.513 0.5621

Each row of the archive is a different evaluated configuration. The columns show the tested
configurations (before transformation) and the chosen performance measure. We can also
manually inspect the archive to determine other important features such as time of evalua-
tion, model runtime, and any errors or warnings that occurred during tuning.

as.data.table(instance$archive)[1:3,
.(timestamp, runtime_learners, errors, warnings)]

timestamp runtime_learners errors warnings
1: 2025-06-18 09:28:19 0.036 0 0
2: 2025-06-18 09:28:19 0.042 0 0
3: 2025-06-18 09:28:19 0.037 0 0

Another powerful feature of the instance is that we can score the internal ResampleResults
on a different performance measure, for example looking at false negative rate and false
positive rate as well as classification error:

as.data.table(instance$archive,
measures = msrs(c("classif.fpr", "classif.fnr")))[1:5 ,
.(cost, gamma, classif.ce, classif.fpr, classif.fnr)]

https://mlr3tuning.mlr-org.com/reference/ti.html
https://mlr3tuning.mlr-org.com/reference/tune.html
https://mlr3.mlr-org.com/reference/ResampleResult.html
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cost gamma classif.ce classif.fpr classif.fnr
1: -11.51 -11.513 0.5621 0.6667 0.3333
2: -11.51 -5.756 0.5621 0.6667 0.3333
3: -11.51 11.513 0.5621 0.6667 0.3333
4: 0.00 -11.513 0.5621 0.6667 0.3333
5: 0.00 -5.756 0.2695 0.3392 0.1655

You can access all the resamplings combined in a BenchmarkResult object with
instance$archive$benchmark_result.

Finally, to visualize the results, you can use autoplot.TuningInstanceBatchSingleCrit
(Figure 4.3). In this example we can observe one of the flaws (by design) in grid search,
despite testing 25 configurations, we only saw five unique values for each hyperparameter.

autoplot(instance, type = "surface")
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Figure 4.3: Model performance with different configurations for cost and gamma. Bright
yellow regions represent the model performing worse and dark blue performing better. We
can see that high cost values and low gamma values achieve the best performance. Note
that we should not directly infer the performance of new unseen values from the heatmap
since it is only an interpolation based on a surrogate model (regr.ranger). However, we
can see the general interaction between the hyperparameters.

Training an optimized model

Once we found good hyperparameters for our learner through tuning, we can use them
to train a final model on the whole data. To do this we simply construct a new learner
with the same underlying algorithm and set the learner hyperparameters to the optimal
configuration:

https://mlr3.mlr-org.com/reference/BenchmarkResult.html
https://mlr3viz.mlr-org.com/reference/autoplot.TuningInstanceBatchSingleCrit.html
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lrn_svm_tuned = lrn("classif.svm")
lrn_svm_tuned$param_set$values = instance$result_learner_param_vals

Now we can train the learner on the full dataset and we are ready to make predictions.

lrn_svm_tuned$train(tsk_sonar)$model

Call:
svm.default(x = data, y = task$truth(), type = "C-classification",

kernel = "radial", gamma = 0.00316227766016838, cost = 316.227766016838,
probability = (self$predict_type == "prob"))

Parameters:
SVM-Type: C-classification

SVM-Kernel: radial
cost: 316.2

Number of Support Vectors: 93

4.2 Convenient Tuning with tune and auto_tuner
In the previous section, we looked at constructing and manually putting together the compo-
nents of HPO by creating a tuning instance using ti(), passing this to the tuner, and then
calling $optimize() to start the tuning process. mlr3tuning includes two helper methods
to simplify this process further.

The first helper function is tune(), which creates the tuning instance and calls $optimize()
for you. You may prefer the manual method with ti() if you want to view and make changes
to the instance before tuning.

tnr_grid_search = tnr("grid_search", resolution = 5, batch_size = 5)
lrn_svm = lrn("classif.svm",
cost = to_tune(1e-5, 1e5, logscale = TRUE),
gamma = to_tune(1e-5, 1e5, logscale = TRUE),
kernel = "radial",
type = "C-classification"

)
rsmp_cv3 = rsmp("cv", folds = 3)
msr_ce = msr("classif.ce")

instance = tune(
tuner = tnr_grid_search,
task = tsk_sonar,
learner = lrn_svm,
resampling = rsmp_cv3,
measures = msr_ce

https://mlr3tuning.mlr-org.com/reference/ti.html
https://mlr3tuning.mlr-org.com/reference/tune.html
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)
instance$result

cost gamma learner_param_vals x_domain classif.ce
1: 0 -5.756 <list[4]> <list[2]> 0.2117

The other helper function is auto_tuner, which creates an object of class AutoTuner (Fig-
ure 4.4). The AutoTuner inherits from the Learner class and wraps all the information
needed for tuning, which means you can treat a learner waiting to be optimized just like
any other learner. Under the hood, the AutoTuner essentially runs tune() on the data that
is passed to the model when $train() is called and then sets the learner parameters to the
optimal configuration.

at = auto_tuner(
tuner = tnr_grid_search,
learner = lrn_svm,
resampling = rsmp_cv3,
measure = msr_ce

)

at

<AutoTuner:classif.svm.tuned>
* Model: list
* Parameters: list()
* Packages: mlr3, mlr3tuning, mlr3learners, e1071
* Predict Types: [response], prob
* Feature Types: logical, integer, numeric
* Properties: multiclass, twoclass
* Search Space:

id class lower upper nlevels
1: cost ParamDbl -11.51 11.51 Inf
2: gamma ParamDbl -11.51 11.51 Inf

And we can now call $train(), which will first tune the hyperparameters in the search
space listed above before fitting the optimal model.

split = partition(tsk_sonar)
at$train(tsk_sonar, row_ids = split$train)
at$predict(tsk_sonar, row_ids = split$test)$score()

classif.ce
0.2029

The AutoTuner contains a tuning instance that can be analyzed like any other instance.

at$tuning_instance$result

cost gamma learner_param_vals x_domain classif.ce
1: 5.756 -5.756 <list[4]> <list[2]> 0.1509

https://mlr3tuning.mlr-org.com/reference/auto_tuner.html
https://mlr3tuning.mlr-org.com/reference/AutoTuner.html
https://mlr3.mlr-org.com/reference/Learner.html
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Figure 4.4: Illustration of an Auto-Tuner.
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We could also pass the AutoTuner to resample() and benchmark(), which would result in
a nested resampling, discussed next.

4.3 Nested Resampling
HPO requires additional resampling to reduce bias when estimating the performance of a
model. If the same data is used for determining the optimal configuration and the evaluation
of the resulting model itself, the actual performance estimate might be biased (Simon 2007).
This is analogous to optimism of the training error described in James et al. (2014), which
occurs when training error is taken as an estimate of out-of-sample performance.

Nested resampling separates model optimization from the process of estimating the perfor-
mance of the tuned model by adding an additional resampling, i.e., while model performance
is estimated using a resampling method in the ‘usual way’, tuning is then performed by re-
sampling the resampled data (Figure 4.5). For more details and a formal introduction to
nested resampling the reader is referred to Bischl et al. (2023) and Simon (2007).

Figure 4.5: An illustration of nested resampling. The large blocks represent three-fold CV
for the outer resampling for model evaluation and the small blocks represent four-fold CV
for the inner resampling for HPO. The light blue blocks are the training sets and the dark
blue blocks are the test sets.

Figure 4.5 represents the following example of nested resampling:

1. Outer resampling start – Instantiate three-fold CV to create different testing and
training datasets.

2. Inner resampling – Within the outer training data instantiate four-fold CV to
create different inner testing and training datasets.

3. HPO – Tune the hyperparameters on the outer training set (large, light blue
blocks) using the inner data splits.

4. Training – Fit the learner on the outer training dataset using the optimal hyper-
parameter configuration obtained from the inner resampling (small blocks).

https://mlr3.mlr-org.com/reference/resample.html
https://mlr3.mlr-org.com/reference/benchmark.html
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5. Evaluation – Evaluate the performance of the learner on the outer testing data
(large, dark blue block).

6. Outer resampling repeats – Repeat (2)-(5) for each of the three outer folds.
7. Aggregation – Take the sample mean of the three performance values for an

unbiased performance estimate.

The inner resampling produces generalization performance estimates for each configuration
and selects the optimal configuration to be evaluated on the outer resampling. The outer
resampling then produces generalization estimates for these optimal configurations. The
result from the outer resampling can be used for comparison to other models trained and
tested on the same outer folds.

Nested Resampling and Parallelization

Nested resampling is computationally expensive, three outer folds and four inner folds
with a grid search of resolution five used to tune two parameters, results in 3∗4∗52 =
300 iterations of model training/testing. If you have the resources we recommend
utilizing parallelization when tuning (Section 10.1).

A common mistake is to think of nested resampling as a method to select optimal model
configurations. Nested resampling is a method to compare models and to estimate the gener-
alization performance of a tuned model, however, this is the performance based on multiple
different configurations (one from each outer fold) and not performance based on a single
configuration (Section 4.3.2). If you are interested in identifying optimal configurations,
then use tune()/ti() or auto_tuner() with $train() on the complete dataset.

4.3.1 Nested Resampling with an AutoTuner
While the theory of nested resampling may seem complicated, it is all automated in
mlr3tuning by simply passing an AutoTuner to resample() or benchmark(). Continuing
with our previous example, we will use the auto-tuner to resample a support vector classifier
with three-fold CV in the outer resampling and four-fold CV in the inner resampling.

at = auto_tuner(
tuner = tnr_grid_search,
learner = lrn_svm,
resampling = rsmp("cv", folds = 4),
measure = msr_ce,

)

rr = resample(tsk_sonar, at, rsmp_cv3, store_models = TRUE)

rr

<ResampleResult> with 3 resampling iterations
task_id learner_id resampling_id iteration prediction_test
sonar classif.svm.tuned cv 1 <PredictionClassif>
sonar classif.svm.tuned cv 2 <PredictionClassif>
sonar classif.svm.tuned cv 3 <PredictionClassif>

2 variable(s) not shown: [warnings, errors]

https://mlr3tuning.mlr-org.com/reference/tune.html
https://mlr3tuning.mlr-org.com/reference/ti.html
https://mlr3tuning.mlr-org.com/reference/auto_tuner.html
https://mlr3.mlr-org.com/reference/resample.html
https://mlr3.mlr-org.com/reference/benchmark.html
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Note that we set store_models = TRUE so that the AutoTuner models (fitted on the outer
training data) are stored, which also enables investigation of the inner tuning instances.
While we used k-fold CV for both the inner and outer resampling strategy, you could
use different resampling strategies (Section 3.2) and also different parallelization methods
(Section 10.1.4).

The estimated performance of a tuned model is reported as the aggregated performance of
all outer resampling iterations, which is a less biased estimate of future model performance.

rr$aggregate()

classif.ce
0.2017

In addition to the methods described in Section 3.2, extract_inner_tuning_results()
and extract_inner_tuning_archives() return the optimal configurations (across all outer
folds) and full tuning archives, respectively.

extract_inner_tuning_results(rr)[,
.(iteration, cost, gamma, classif.ce)]

iteration cost gamma classif.ce
1: 1 11.513 -5.756 0.1655
2: 2 5.756 -5.756 0.2013
3: 3 11.513 -11.513 0.2027

extract_inner_tuning_archives(rr)[1:3,
.(iteration, cost, gamma, classif.ce)]

iteration cost gamma classif.ce
1: 1 0.000 -11.513 0.4321
2: 1 0.000 5.756 0.4679
3: 1 5.756 5.756 0.4679

4.3.2 The Right (and Wrong) Way to Estimate Performance

This section covers advanced ML or technical details.

In this short section we will empirically demonstrate that directly reporting tuning per-
formance without nested resampling results in optimistically biased performance estimates.
In this experiment we tune several parameters from lrn("classif.xgboost"). To best
estimate the generalization performance we make use of the "moons" TaskGenerator

TaskGenerator
. The

TaskGenerator class is used when you want to simulate data for use in experiments, these
are very useful in cases such as this experiment when you need access to an infinite number
of data points to estimate quantities such as the generalization error.

We begin by loading our learner, task generator, and generating 100 training data points
and 1,000,000 testing data points.

https://mlr3tuning.mlr-org.com/reference/extract_inner_tuning_results.html
https://mlr3tuning.mlr-org.com/reference/extract_inner_tuning_archives.html
https://mlr3.mlr-org.com/reference/TaskGenerator.html
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set.seed(5)
lrn_xgboost = lrn("classif.xgboost",
eta = to_tune(1e-4, 1, logscale = TRUE),
max_depth = to_tune(1, 20),
colsample_bytree = to_tune(1e-1, 1),
colsample_bylevel = to_tune(1e-1, 1),
lambda = to_tune(1e-3, 1e3, logscale = TRUE),
alpha = to_tune(1e-3, 1e3, logscale = TRUE),
subsample = to_tune(1e-1, 1)

)
tsk_moons = tgen("moons")
tsk_moons_train = tsk_moons$generate(100)
tsk_moons_test = tsk_moons$generate(1000000)

Now we will tune the learner with respect to the classification error, using holdout resam-
pling and random search with 700 evaluations. We then report the tuning performance
without nested resampling.

tnr_random = tnr("random_search")
rsmp_holdout = rsmp("holdout")
trm_evals700 = trm("evals", n_evals = 700)

instance = tune(
tuner = tnr_random,
task = tsk_moons_train,
learner = lrn_xgboost,
resampling = rsmp_holdout,
measures = msr_ce,
terminator = trm_evals700

)

insample = instance$result_y

Next, we estimate generalization error by nested resampling (below we use an outer five-fold
CV), using an AutoTuner:

# same setup as above
at = auto_tuner(
tuner = tnr_random,
learner = lrn_xgboost,
resampling = rsmp_holdout,
measure = msr_ce,
terminator = trm_evals700

)

rsmp_cv5 = rsmp("cv", folds = 5)

outsample = resample(tsk_moons_train, at, rsmp_cv5)$aggregate()

And finally, we estimate the generalization error by training the tuned learner (i.e., using
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the values from the instance above) on the full training data again and predicting on the
test data.

lrn_xgboost_tuned = lrn("classif.xgboost")
lrn_xgboost_tuned$param_set$set_values(
.values = instance$result_learner_param_vals)

generalization = lrn_xgboost_tuned$train(tsk_moons_train)$
predict(tsk_moons_test)$score()

Now we can compare these three values:

round(c(true_generalization = as.numeric(generalization),
without_nested_resampling = as.numeric(insample),
with_nested_resampling = as.numeric(outsample)), 2)

true_generalization without_nested_resampling
0.10 0.06

with_nested_resampling
0.09

We find that the performance estimate from unnested tuning optimistically overestimates
the true performance (which could indicate ‘meta-overfitting’ to the specific inner holdout-
splits), while the outer estimate from nested resampling works much better.

4.4 More Advanced Search Spaces
Up until now, we have only considered tuning simple search spaces limited to a few numeric
hyperparameters. In this section, we will first look at how to tune different scalar parameter
classes with to_tune(), and then how to define your own search space with ParamSet to
create more advanced search spaces that may include tuning over vectors, transformations,
and handling parameter dependencies. Finally, we will consider how to access a database of
standardized search spaces from the literature.

4.4.1 Scalar Parameter Tuning
The to_tune() function can be used to tune parameters of any class, whether they are
scalar or vectors. To best understand this function, we will consider what is happening
behind the scenes. When to_tune() is used in a learner, implicitly a ParamSet is created
just for the tuning search space:

learner = lrn("classif.svm",
cost = to_tune(1e-1, 1e5),
gamma = to_tune(1e-1, 1),
kernel = "radial",
type = "C-classification"

)

https://paradox.mlr-org.com/reference/to_tune.html
https://paradox.mlr-org.com/reference/ParamSet.html
https://paradox.mlr-org.com/reference/to_tune.html
https://paradox.mlr-org.com/reference/ParamSet.html
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learner$param_set$search_space()

<ParamSet(2)>
id class lower upper nlevels default value

1: cost ParamDbl 0.1 1e+05 Inf <NoDefault[0]> [NULL]
2: gamma ParamDbl 0.1 1e+00 Inf <NoDefault[0]> [NULL]

Recall from Section 2.2.3, that the class field corresponds to the hyperparameter class as de-
fined in paradox. In this example, we can see that gamma hyperparameter has class ParamDbl,
with lower = 0.1 and upper = 1, which was automatically created by to_tune() as we
passed two numeric values to this function. If we wanted to tune over a non-numeric hy-
perparameter, we can still use to_tune(), which will infer the correct class to construct in
the resulting parameter set. For example, say we wanted to tune the numeric cost, factor
kernel, and logical scale hyperparameter in our SVM:

learner = lrn("classif.svm",
cost = to_tune(1e-1, 1e5),
kernel = to_tune(c("radial", "linear")),
shrinking = to_tune(),
type = "C-classification"

)

learner$param_set$search_space()

<ParamSet(3)>
id class lower upper nlevels default value

1: cost ParamDbl 0.1 1e+05 Inf <NoDefault[0]> [NULL]
2: kernel ParamFct NA NA 2 <NoDefault[0]> [NULL]
3: shrinking ParamLgl NA NA 2 TRUE [NULL]

Here the kernel hyperparameter is a factor, so we simply pass in a vector corresponding to
the levels we want to tune over. The shrinking hyperparameter is a logical, there are only
two possible values this could take so we do not need to pass anything to to_tune(), it will
automatically recognize this is a logical from learner$param_set and passes this detail to
learner$param_set$search_space(). Similarly, for factor parameters, we could also use
to_tune() without any arguments if we want to tune over all possible values. Finally, we
can use to_tune() to treat numeric parameters as factors if we want to discretize them
over a small subset of possible values, for example, if we wanted to find the optimal number
of trees in a random forest we might only consider three scenarios: 100, 200, or 400 trees:

lrn("classif.ranger", num.trees = to_tune(c(100, 200, 400)))

Before we look at tuning over vectors, we must first learn how to create parameter sets from
scratch.

Ordered Hyperparameters

Treating an integer as a factor for tuning results in “unordered” hyperparameters.
Therefore algorithms that make use of ordering information will perform worse when
ordering is ignored. For these algorithms, it would make more sense to define a

https://paradox.mlr-org.com
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ParamDbl or ParamInt (Section 4.4.2) with a custom transformation (Section 4.4.3).

4.4.2 Defining Search Spaces with ps
As we have seen, to_tune() is a helper function that creates a parameter set that will
go on to be used by tune(), ti(), or auto_tuner() during the tuning process. However,
there will be use cases where you will need to create a parameter set manually using ps().
This function takes named arguments of class Domain, which can be created using the sugar
functions in Table 4.3.

Table 4.3: Domain Constructors and their resulting Domain.

Constructor Description Underlying Class
p_dbl Real valued parameter (“double”) ParamDbl
p_int Integer parameter ParamInt
p_fct Discrete valued parameter (“factor”) ParamFct
p_lgl Logical / Boolean parameter ParamLgl
p_uty Untyped parameter ParamUty

As a simple example, let us look at how to create a search space to tune cost and gamma
again:

search_space = ps(
cost = p_dbl(lower = 1e-1, upper = 1e5),
kernel = p_fct(c("radial", "linear")),
shrinking = p_lgl()

)

This search space would then be passed to the search_space argument in auto_tuner():

ti(tsk_sonar, lrn("classif.svm", type = "C-classification"), rsmp_cv3,
msr_ce, trm("none"), search_space = search_space)

<TuningInstanceBatchSingleCrit>
* State: Not optimized
* Objective: <ObjectiveTuningBatch:classif.svm_on_sonar>
* Search Space:

id class lower upper nlevels
1: cost ParamDbl 0.1 1e+05 Inf
2: kernel ParamFct NA NA 2
3: shrinking ParamLgl NA NA 2
* Terminator: <TerminatorNone>

Bounded Search Spaces

When manually creating search spaces, make sure all numeric hyperparameters in
your search space are bounded, e.g., if you are trying to tune a hyperparameter that
could take any value in (−∞, ∞) then the tuning process will throw an error for nearly

https://paradox.mlr-org.com/reference/to_tune.html
https://mlr3tuning.mlr-org.com/reference/tune.html
https://mlr3tuning.mlr-org.com/reference/ti.html
https://mlr3tuning.mlr-org.com/reference/auto_tuner.html
https://paradox.mlr-org.com/reference/ps.html
https://paradox.mlr-org.com/reference/Domain.html
https://paradox.mlr-org.com/reference/Domain.html
https://paradox.mlr-org.com/reference/Domain.html
https://paradox.mlr-org.com/reference/Domain.html
https://paradox.mlr-org.com/reference/Domain.html
https://paradox.mlr-org.com/reference/Domain.html
https://paradox.mlr-org.com/reference/Domain.html
https://paradox.mlr-org.com/reference/Domain.html
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all tuners if you do not pass lower and upper limits to p_dbl() or p_int(). You can
use $is_bounded on the constructed ParamSet if you are unsure:

ps(cost = p_dbl(lower = 0.1, upper = 1))$is_bounded

cost
TRUE

ps(cost = p_dbl(lower = 0.1, upper = Inf))$is_bounded

cost
FALSE

4.4.3 Transformations and Tuning Over Vectors

This section covers advanced ML or technical details.

In Section 4.1.5 we saw how to quickly apply log transformations with to_tune(). As you
now know, to_tune() is just a wrapper that creates ParamSet objects, so let us look at
what is taking place when we set logscale = TRUE:

lrn("classif.svm", cost = to_tune(1e-5, 1e5, logscale = TRUE))$
param_set$search_space()

<ParamSet(1)>
id class lower upper nlevels default value

1: cost ParamDbl -11.51 11.51 Inf <NoDefault[0]> [NULL]
Trafo is set.

Notice that now the lower and upper fields correspond to the transformed bounds,
i.e. [log(1𝑒 − 5), log(1𝑒5)]. To manually create the same transformation, we can pass the
transformation to the trafo argument in p_dbl() and set the bounds:

search_space = ps(cost = p_dbl(log(1e-5), log(1e5),
trafo = function(x) exp(x))) # alternatively: 'trafo = exp'

search_space

<ParamSet(1)>
id class lower upper nlevels default value

1: cost ParamDbl -11.51 11.51 Inf <NoDefault[0]> [NULL]
Trafo is set.

We can confirm it is correctly set by making use of the $trafo() method, which takes a
named list and applies the specified transformations

search_space$trafo(list(cost = 1))

$cost

https://paradox.mlr-org.com/reference/ParamSet.html
https://paradox.mlr-org.com/reference/to_tune.html
https://paradox.mlr-org.com/reference/ParamSet.html
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[1] 2.718

Where transformations become the most powerful is in the ability to pass arbitrary functions
that can act on single parameters or even the entire parameter set. As an example, consider
a simple transformation to add ‘2’ to our range:

search_space = ps(cost = p_dbl(0, 3, trafo = function(x) x + 2))
search_space$trafo(list(cost = 1))

$cost
[1] 3

Simple transformations such as this can even be added directly to a learner by passing a
Param object to to_tune():

lrn("classif.svm",
cost = to_tune(p_dbl(0, 3, trafo = function(x) x + 2)))

More complex transformations that require multiple arguments should be passed to the
.extra_trafo parameter in ps(). .extra_trafo takes a function with parameters x and
param_set where, during tuning, x will be a list containing the configuration being tested,
and param_set is the whole parameter set. Below we first exponentiate the value of cost
and then add ‘2’ if the kernel is "polynomial".

search_space = ps(
cost = p_dbl(-1, 1, trafo = function(x) exp(x)),
kernel = p_fct(c("polynomial", "radial")),
.extra_trafo = function(x, param_set) {

if (x$kernel == "polynomial") {
x$cost = x$cost + 2

}
x

}
)
search_space$trafo(list(cost = 1, kernel = "radial"))

$cost
[1] 2.718

$kernel
[1] "radial"

search_space$trafo(list(cost = 1, kernel = "polynomial"))

$cost
[1] 4.718

$kernel
[1] "polynomial"
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Vector transformations

Any function can be passed to trafo and .extra_trafo, which enables tuning of ‘untyped’
parameters of class ParamUty that could be vectors, functions, or any non-atomic class. By
example, consider the class.weights parameter of the SVM, which takes a named vector
of class weights with one entry for each target class. To tune this parameter we could tune
a scalar and then transform this to a vector. The code below would result in a value, x,
between 0.1 and 0.9 being sampled, the result is then transformed to (x, 1 - x) and is
then passed to the Learner.

search_space = ps(
class.weights = p_dbl(lower = 0.1, upper = 0.9,

trafo = function(x) c(M = x, R = 1 - x))
)

In other cases, we may need to tune two or more ‘pseudoparameters’ that do not exist in our
learner’s parameter set but are required to tune a vector parameter. For example, say we
want to tune the architecture of a neural network, in which we need to decide the number of
layers and the number of nodes in each layer, this is the case in the num_nodes hyperparam-
eter in lrn("surv.coxtime") (we use this learner as it provides a useful template for this
sort of transformation, interested readers can read about survival analysis in Section 13.2).
In this case, the learner expects a vector where each element of the vector corresponds to
the number of nodes in a layer and the length of the vector is the number of layers. We
could then tune this as follows:

search_space = ps(
num_layers = p_int(lower = 1, upper = 20),
num_nodes_per_layer = p_int(4, 64),
.extra_trafo = function(x, param_set) {

x$num_nodes = rep(x$num_nodes_per_layer, x$num_layers)
x$num_layers = NULL
x$num_nodes_per_layer = NULL
x

}
)

Here we are tuning the pseudo-parameter num_layers between 1 and 20, then tuning the
pseudo-parameter num_nodes_per_layer between 4 and 64, then combining these into a
vector called num_nodes (the real hyperparameter) and removing the pseudo-parameters.

search_space$trafo(list(num_layers = 4, num_nodes_per_layer = 12))

$num_nodes
[1] 12 12 12 12

Even though this transformation looks complex, it only affects one of the hyperparameters
(and does not need access to others), so we could include it in the learner using to_tune()
by passing the whole ParamSet object:

learner = lrn("surv.coxtime")
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Warning: Package 'survivalmodels' required but not installed for Learner
'surv.coxtime'

learner$param_set$set_values(num_nodes = to_tune(search_space))
learner$param_set$search_space()

<ParamSet(2)>
id class lower upper nlevels default

1: num_layers ParamInt 1 20 20 <NoDefault[0]>
2: num_nodes_per_layer ParamInt 4 64 61 <NoDefault[0]>
1 variable(s) not shown: [value]
Trafo is set.

4.4.4 Hyperparameter Dependencies

This section covers advanced ML or technical details.

Hyperparameter dependencies occur when a hyperparameter should only be set if another
hyperparameter has a particular value. For example, the degree parameter in SVM is only
valid when kernel is "polynomial". In the ps() function, we specify this using the depends
argument, which takes a named argument of the form <param> == value or <param> %in%
<vector>:

ps(
kernel = p_fct(c("polynomial", "radial")),
degree = p_int(1, 3, depends = (kernel == "polynomial")),
gamma = p_dbl(1e-5, 1e5,

depends = (kernel %in% c("polynomial", "radial")))
)

<ParamSet(3)>
id class lower upper nlevels default parents value

1: degree ParamInt 1e+00 3e+00 3 <NoDefault[0]> kernel [NULL]
2: gamma ParamDbl 1e-05 1e+05 Inf <NoDefault[0]> kernel [NULL]
3: kernel ParamFct NA NA 2 <NoDefault[0]> [NULL] [NULL]

Above we have said that degree should only be set if kernel is (==) "polynomial", and
gamma should only be set if kernel is one of (%in%) "polynomial" or "radial". In practice,
some underlying implementations ignore unused parameters and others throw errors, either
way, this is problematic during tuning if, for example, we were wasting time trying to tune
degree when the kernel was not polynomial. Hence setting the dependency tells the tuning
process to tune degree if kernel is "polynomial" and to ignore it otherwise.

Dependencies can also be passed straight into a learner using to_tune():

lrn("classif.svm",
kernel = to_tune(c("polynomial", "radial")),
degree = to_tune(p_int(1, 3, depends = (kernel == "polynomial")))

)$param_set$search_space()

https://paradox.mlr-org.com/reference/ps.html
https://paradox.mlr-org.com/reference/to_tune.html
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<ParamSet(2)>
id class lower upper nlevels default parents

1: degree ParamInt 1 3 3 <NoDefault[0]> kernel,kernel
2: kernel ParamFct NA NA 2 <NoDefault[0]> [NULL]
1 variable(s) not shown: [value]

4.4.5 Recommended Search Spaces with mlr3tuningspaces

This section covers advanced ML or technical details.

Selected search spaces can require a lot of background knowledge or expertise. The package
mlr3tuningspaces tries to make HPO more accessible by providing implementations of
published search spaces for many popular machine learning algorithms, the hope is that
these search spaces are applicable to a wide range of datasets. The search spaces are stored
in the dictionary mlr_tuning_spaces.

library(mlr3tuningspaces)
as.data.table(mlr_tuning_spaces)[1:3, .(key, label)]

key label
1: classif.glmnet.default Classification GLM with Default
2: classif.glmnet.rbv1 Classification GLM with RandomBot
3: classif.glmnet.rbv2 Classification GLM with RandomBot

The tuning spaces are named according to the scheme {learner-id}.{tuning-space-id}.
The default tuning spaces are published in Bischl et al. (2023), other tuning spaces are
part of the random bot experiments rbv1 and rbv2 published in Kuehn et al. (2018) and
Binder, Pfisterer, and Bischl (2020). The sugar function lts() (learner tuning space) is
used to retrieve a TuningSpace.

lts_rpart = lts("classif.rpart.default")
lts_rpart

<TuningSpace:classif.rpart.default>: Classification Rpart with Default
id lower upper levels logscale

1: minsplit 2e+00 128.0 [NULL] TRUE
2: minbucket 1e+00 64.0 [NULL] TRUE
3: cp 1e-04 0.1 [NULL] TRUE

A tuning space can be passed to ti() or auto_tuner() as the search_space.

instance = ti(
task = tsk_sonar,
learner = lrn("classif.rpart"),
resampling = rsmp("cv", folds = 3),
measures = msr("classif.ce"),
terminator = trm("evals", n_evals = 20),
search_space = lts_rpart

)

https://mlr3tuningspaces.mlr-org.com
https://mlr3tuningspaces.mlr-org.com/reference/mlr_tuning_spaces.html
https://mlr3tuningspaces.mlr-org.com/reference/lts.html
https://mlr3tuningspaces.mlr-org.com/reference/TuningSpace.html
https://mlr3tuning.mlr-org.com/reference/ti.html
https://mlr3tuning.mlr-org.com/reference/auto_tuner.html
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Alternatively, as loaded search spaces are just a collection of tune tokens, we could also pass
these straight to a learner:

vals = lts_rpart$values
vals

$minsplit
Tuning over:
range [2, 128] (log scale)

$minbucket
Tuning over:
range [1, 64] (log scale)

$cp
Tuning over:
range [1e-04, 0.1] (log scale)

learner = lrn("classif.rpart")
learner$param_set$set_values(.values = vals)
learner$param_set

<ParamSet(10)>
id class lower upper nlevels default

1: cp ParamDbl 0 1 Inf 0.01
2: keep_model ParamLgl NA NA 2 FALSE
3: maxcompete ParamInt 0 Inf Inf 4
4: maxdepth ParamInt 1 30 30 30
5: maxsurrogate ParamInt 0 Inf Inf 5
6: minbucket ParamInt 1 Inf Inf <NoDefault[0]>
7: minsplit ParamInt 1 Inf Inf 20
8: surrogatestyle ParamInt 0 1 2 0
9: usesurrogate ParamInt 0 2 3 2
10: xval ParamInt 0 Inf Inf 10
1 variable(s) not shown: [value]

Note how we used the .values parameter of $set_values(), which allows us to safely pass
a list to the ParamSet without accidentally overwriting any other hyperparameter values
(Section 2.2.3).

We could also apply the default search spaces from Bischl et al. (2023) by passing the learner
to lts():

lts(lrn("classif.rpart"))

<LearnerClassifRpart:classif.rpart>: Classification Tree
* Model: -
* Parameters: cp=<RangeTuneToken>, minbucket=<RangeTuneToken>,
minsplit=<RangeTuneToken>, xval=0

https://mlr3tuningspaces.mlr-org.com/reference/lts.html
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* Packages: mlr3, rpart
* Predict Types: [response], prob
* Feature Types: logical, integer, numeric, factor, ordered
* Properties: importance, missings, multiclass,
selected_features, twoclass, weights

Finally, it is possible to overwrite a predefined tuning space in construction, for example,
changing the range of the maxdepth hyperparameter in a decision tree:

lts("classif.rpart.rbv2", maxdepth = to_tune(1, 20))

<TuningSpace:classif.rpart.rbv2>: Classification Rpart with RandomBot
id lower upper levels logscale

1: cp 1e-04 1 [NULL] TRUE
2: maxdepth 1e+00 20 [NULL] FALSE
3: minbucket 1e+00 100 [NULL] FALSE
4: minsplit 1e+00 100 [NULL] FALSE

4.5 Conclusion
In this chapter, we learned how to optimize a model using tuning instances, about different
tuners and terminators, search spaces and transformations, how to make use of convenience
methods for quicker implementation in larger experiments, and the importance of nested
resampling.

Table 4.4: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor/Function Fields/Methods
Terminator trm() -
TuningInstanceBatchSingleCrit or
TuningInstanceBatchMultiCrit

ti()/tune() $result; $archive

TunerBatch tnr() $optimize()
TuneToken to_tune() -
AutoTuner auto_tuner() $train();

$predict();
$tuning_instance

- extract_inner_tuning_results()
- extract_inner_tuning_archives()
ParamSet ps() -
TuningSpace lts() $values

https://bbotk.mlr-org.com/reference/Terminator.html
https://bbotk.mlr-org.com/reference/trm.html
https://mlr3tuning.mlr-org.com/reference/TuningInstanceBatchSingleCrit.html
https://mlr3tuning.mlr-org.com/reference/TuningInstanceBatchMultiCrit.html
https://mlr3tuning.mlr-org.com/reference/ti.html
https://mlr3tuning.mlr-org.com/reference/tune.html
https://mlr3tuning.mlr-org.com/reference/TunerBatch.html
https://mlr3tuning.mlr-org.com/reference/tnr.html
https://paradox.mlr-org.com/reference/TuneToken.html
https://paradox.mlr-org.com/reference/to_tune.html
https://mlr3tuning.mlr-org.com/reference/AutoTuner.html
https://mlr3tuning.mlr-org.com/reference/auto_tuner.html
https://mlr3tuning.mlr-org.com/reference/extract_inner_tuning_results.html
https://mlr3tuning.mlr-org.com/reference/extract_inner_tuning_archives.html
https://paradox.mlr-org.com/reference/ParamSet.html
https://paradox.mlr-org.com/reference/ps.html
https://mlr3tuningspaces.mlr-org.com/reference/TuningSpace.html
https://mlr3tuningspaces.mlr-org.com/reference/lts.html
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4.6 Exercises
1. Tune the mtry, sample.fraction, and num.trees hyperparameters of

lrn("regr.ranger") on tsk("mtcars"). Use a simple random search with 50
evaluations. Evaluate with a three-fold CV and the root mean squared error. Vi-
sualize the effects that each hyperparameter has on the performance via simple
marginal plots, which plot a single hyperparameter versus the cross-validated
MSE.

2. Evaluate the performance of the model created in Exercise 1 with nested resam-
pling. Use a holdout validation for the inner resampling and a three-fold CV for
the outer resampling.

3. Tune and benchmark an XGBoost model against a logistic regression (with-
out tuning the latter) and determine which has the best Brier score. Use
mlr3tuningspaces and nested resampling, try to pick appropriate inner and
outer resampling strategies that balance computational efficiency vs. stability of
the results.

4. (*) Write a function that implements an iterated random search procedure that
drills down on the optimal configuration by applying random search to iter-
atively smaller search spaces. Your function should have seven inputs: task,
learner, search_space, resampling, measure, random_search_stages, and
random_search_size. You should only worry about programming this for fully
numeric and bounded search spaces that have no dependencies. In pseudo-code:
(1) Create a random design of size random_search_size from the given search

space and evaluate the learner on it.
(2) Identify the best configuration.
(3) Create a smaller search space around this best config, where you define

the new range for each parameter as: new_range[i] = (best_conf[i] -
0.25 * current_range[i], best_conf[i] + 0.25*current_range[i]).
Ensure that this new_range respects the initial bound of the original
search_space by taking the max() of the new and old lower bound, and the
min() of the new and the old upper bound (“clipping”).

(4) Iterate the previous steps random_search_stages times and at the end re-
turn the best configuration you have ever evaluated. As a stretch goal, look
into mlr3tuning’s internal source code and turn your function into an R6
class inheriting from the TunerBatch class – test it out on a learner of your
choice.
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Having looked at the basic usage of mlr3tuning, we will now turn to more advanced meth-
ods. We will begin in Section 5.1 by continuing to look at single-objective tuning but will
consider what happens when experiments go wrong and how to prevent fatal errors. We
will then extend the methodology from Chapter 4 to enable multi-objective tuning, where
learners are optimized to multiple measures simultaneously, in Section 5.2 we will demon-
strate how this is handled relatively simply in mlr3 by making use of the same classes
and methods we have already used. The final two sections focus on specific optimization
methods. Section 5.3 looks in detail at multi-fidelity tuning and the Hyperband tuner, and
then demonstrates it in practice with mlr3hyperband. Finally, Section 5.4 takes a deep dive
into black box Bayesian optimization. This is a more theory-heavy section to motivate the
design of the classes and methods in mlr3mbo.

5.1 Error Handling and Memory Management
In this section, we will look at how to use mlr3 to ensure that tuning workflows are efficient
and robust. In particular, we will consider how to enable features that prevent fatal errors
leading to irrecoverable data loss in the middle of an experiment, and then how to manage
tuning experiments that may use up a lot of computer memory.

5.1.1 Encapsulation and Fallback Learner
Error handling is discussed in detail in Section 10.2, however, it is very important in the con-
text of tuning so here we will just practically demonstrate how to make use of encapsulation
and fallback learners and explain why they are essential during HPO.

Even in simple machine learning problems, there is a lot of potential for things to go wrong.
For example, when learners do not converge, run out of memory, or terminate with an error
due to issues in the underlying data. As a common issue, learners can fail if there are factor
levels present in the test data that were not in the training data, models fail in this case as
there have been no weights/coefficients trained for these new factor levels:
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tsk_pen = tsk("penguins")
# remove rows with missing values
tsk_pen$filter(tsk_pen$row_ids[complete.cases(tsk_pen$data())])
# create custom resampling with new factors in test data
rsmp_custom = rsmp("custom")
rsmp_custom$instantiate(tsk_pen,
list(tsk_pen$row_ids[tsk_pen$data()$island != "Torgersen"]),
list(tsk_pen$row_ids[tsk_pen$data()$island == "Torgersen"])

)
msr_ce = msr("classif.ce")
tnr_random = tnr("random_search")
learner = lrn("classif.lda", method = "t", nu = to_tune(3, 10))

tune(tnr_random, tsk_pen, learner, rsmp_custom, msr_ce, 10)

Error in lda.default(x, grouping, ...): variable 6 appears to be constant within groups

In the above example, we can see the tuning process breaks and we lose all information
about the hyperparameter optimization process. This is even worse in nested resampling or
benchmarking when errors could cause us to lose all progress across multiple configurations
or even learners and tasks.

Encapsulation (Section 10.2.1) allows errors to be isolated and handled, without disrupting
the tuning process. We can tell a learner to encapsulate an error using the $encapsulate()
method as follows:

learner$encapsulate(method = "evaluate", fallback = lrn("classif.featureless"))

Note by passing "evaluate", we are telling the learner to set up encapsulation in both the
training and prediction stages (see Section 10.2 for other encapsulation options).

Another common issue that cannot be easily solved during HPO is learners not converging
and the process running indefinitely. We can prevent this from happening by setting the
timeout field in a learner, which signals the learner to stop if it has been running for that
much time (in seconds), again this can be set for training and prediction individually:

learner$timeout = c(train = 30, predict = 30)

Now if either an error occurs, or the model timeout threshold is reached, then instead
of breaking, the learner will simply not make predictions when errors are found and the
result is NA for resampling iterations with errors. When this happens, our hyperparameter
optimization experiment will fail as we cannot aggregate results across resampling iterations.
Therefore it is essential to select a fallback learner (Section 10.2.2), which is a learner that
will be fitted if the learner of interest fails.

A common approach is to use a featureless baseline (lrn("regr.featureless") or
lrn("classif.featureless")). We use lrn("classif.featureless"), which always pre-
dicts the majority class.

We can now run our experiment and see errors that occurred during tuning in the archive.
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instance = tune(tnr_random, tsk_pen, learner, rsmp_custom, msr_ce,
10)

ERROR [09:45:47.022] [mlr3] train: variable 6 appears to be constant within groups
ERROR [09:45:47.120] [mlr3] train: variable 6 appears to be constant within groups
ERROR [09:45:47.187] [mlr3] train: variable 6 appears to be constant within groups
ERROR [09:45:47.249] [mlr3] train: variable 6 appears to be constant within groups
ERROR [09:45:47.314] [mlr3] train: variable 6 appears to be constant within groups
ERROR [09:45:47.376] [mlr3] train: variable 6 appears to be constant within groups
ERROR [09:45:47.439] [mlr3] train: variable 6 appears to be constant within groups
ERROR [09:45:47.505] [mlr3] train: variable 6 appears to be constant within groups
ERROR [09:45:47.566] [mlr3] train: variable 6 appears to be constant within groups
ERROR [09:45:47.629] [mlr3] train: variable 6 appears to be constant within groups

as.data.table(instance$archive)[1:3, .(df, classif.ce, errors)]

df classif.ce errors
1: <function[1]> 1 1
2: <function[1]> 1 1
3: <function[1]> 1 1

# Reading the error in the first resample result
instance$archive$resample_result(1)$errors

iteration msg
1: 1 variable 6 appears to be constant within groups

The learner was tuned without breaking because the errors were encapsulated and logged
before the fallback learners were used for fitting and predicting:

instance$result

nu learner_param_vals x_domain classif.ce
1: 9 <list[2]> <list[1]> 1

5.1.2 Memory Management
Running a large tuning experiment can use a lot of memory, especially when using nested
resampling. Most of the memory is consumed by the models since each resampling iteration
creates one new model. Storing the models is therefore disabled by default and in most cases
is not required. The option store_models in the functions ti() and auto_tuner() allows
us to enable the storage of the models.

The archive stores a ResampleResult for each evaluated hyperparameter configuration.
The contained Prediction objects can also take up a lot of memory, especially with large
datasets and many resampling iterations. We can disable the storage of the resample results
by setting store_benchmark_result = FALSE in the functions ti() and auto_tuner().
Note that without the resample results, it is no longer possible to score the configurations
with another measure.

When we run nested resampling with many outer resampling iterations, addi-

https://mlr3tuning.mlr-org.com/reference/ti.html
https://mlr3tuning.mlr-org.com/reference/auto_tuner.html
https://mlr3.mlr-org.com/reference/ResampleResult.html
https://mlr3.mlr-org.com/reference/Prediction.html
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tional memory can be saved if we set store_tuning_instance = FALSE in the
auto_tuner() function. However, the functions extract_inner_tuning_results() and
extract_inner_tuning_archives() will then no longer work.

The option store_models = TRUE sets store_benchmark_result and
store_tuning_instance to TRUE because the models are stored in the benchmark results
which in turn is part of the instance. This also means that store_benchmark_result =
TRUE sets store_tuning_instance to TRUE.

Finally, we can set store_models = FALSE in the resample() or benchmark() functions
to disable the storage of the auto tuners when running nested resampling. This way we can
still access the aggregated performance (rr$aggregate()) but lose information about the
inner resampling.

5.2 Multi-Objective Tuning
So far we have considered optimizing a model with respect to one metric, but multi-criteria,
or multi-objectiveMulti-

objective
optimization, is also possible. A simple example of multi-objective op-

timization might be optimizing a classifier to simultaneously maximize true positive pre-
dictions and minimize false negative predictions. In another example, consider the single-
objective problem of tuning a neural network to minimize classification error. The best-
performing model is likely to be quite complex, possibly with many layers that will have
drawbacks like being harder to deploy on devices with limited resources. In this case, we
might want to simultaneously minimize the classification error and model complexity.

By definition, optimization of multiple metrics means these will be in competition (otherwise
we would only optimize one of them) and therefore in general no single configuration exists
that optimizes all metrics. Therefore, we instead focus on the concept of Pareto optimality.
One hyperparameter configuration is said to Pareto-dominate another if the resulting model
is equal or better in all metrics and strictly better in at least one metric. For example say
we are minimizing classification error, CE, and complexity, CP, for configurations A and
B with CE of 𝐶𝐸𝐴 and 𝐶𝐸𝐵 respectively and CP of 𝐶𝑃𝐴 and 𝐶𝑃𝐵 respectively. Then,
A pareto-dominates B if: 1) 𝐶𝐸𝐴 ≤ 𝐶𝐸𝐵 and 𝐶𝑃𝐴 < 𝐶𝑃𝐵 or; 2) 𝐶𝐸𝐴 < 𝐶𝐸𝐵 and
𝐶𝑃𝐴 ≤ 𝐶𝑃𝐵. All configurations that are not Pareto-dominated by any other configuration
are called Pareto-efficient and the set of all these configurations is the Pareto set. The
metric values corresponding to the Pareto set are referred to as the Pareto frontPareto front .

The goal of multi-objective hyperparameter optimization is to find a set of non-dominated
solutions so that their corresponding metric values approximate the Pareto front. We will
now demonstrate multi-objective hyperparameter optimization by tuning a decision tree on
tsk("sonar") with respect to the classification error, as a measure of model performance,
and the number of selected features, as a measure of model complexity (in a decision tree
the number of selected features is straightforward to obtain by simply counting the number
of unique splitting variables). Methodological details on multi-objective hyperparameter
optimization can be found in Karl et al. (2022) and Morales-Hernández, Van Nieuwenhuyse,
and Rojas Gonzalez (2022).

We will tune cp, minsplit, and maxdepth:

https://mlr3tuning.mlr-org.com/reference/extract_inner_tuning_results.html
https://mlr3tuning.mlr-org.com/reference/extract_inner_tuning_archives.html
https://mlr3.mlr-org.com/reference/resample.html
https://mlr3.mlr-org.com/reference/benchmark.html
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learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1),
minsplit = to_tune(2, 64), maxdepth = to_tune(1, 30))

measures = msrs(c("classif.ce", "selected_features"))

As we are tuning with respect to multiple measures, the function ti() automatically creates
a TuningInstanceBatchMultiCrit instead of a TuningInstanceBatchSingleCrit. Below
we set store_models = TRUE as this is required by the selected features measure.

instance = ti(
task = tsk("sonar"),
learner = learner,
resampling = rsmp("cv", folds = 3),
measures = measures,
terminator = trm("evals", n_evals = 30),
store_models = TRUE

)
instance

<TuningInstanceBatchMultiCrit>
* State: Not optimized
* Objective: <ObjectiveTuningBatch:classif.rpart_on_sonar>
* Search Space:

id class lower upper nlevels
1: cp ParamDbl 1e-04 0.1 Inf
2: maxdepth ParamInt 1e+00 30.0 30
3: minsplit ParamInt 2e+00 64.0 63
* Terminator: <TerminatorEvals>

We can then select and tune a tuning algorithm as usual:

tuner = tnr("random_search")
tuner$optimize(instance)

Finally, we inspect the best-performing configurations, i.e., the Pareto set, and visualize
the corresponding estimated Pareto front (Figure 5.1). Note that the selected_features
measure is averaged across the folds, so the values in the archive may not always be integers.

instance$archive$best()[, .(cp, minsplit, maxdepth, classif.ce,
selected_features)]

cp minsplit maxdepth classif.ce selected_features
1: 0.01091 8 15 0.2400 8.667
2: 0.03505 5 8 0.2446 6.667
3: 0.06275 15 1 0.2784 1.000
4: 0.03671 7 9 0.2446 6.667
5: 0.03653 4 10 0.2446 6.667
6: 0.09033 64 1 0.2784 1.000
7: 0.04139 37 1 0.2784 1.000

Determining which configuration to deploy from the Pareto front is up to you. By definition,

https://mlr3tuning.mlr-org.com/reference/TuningInstanceBatchMultiCrit.html
https://mlr3tuning.mlr-org.com/reference/TuningInstanceBatchSingleCrit.html
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Figure 5.1: Pareto front of selected features and classification error. White dots represent
tested configurations, each black dot individually represents a Pareto-optimal configuration
and all black dots together represent the approximated Pareto front.

there is no optimal configuration so this may depend on your use case, for example, if
you would prefer lower complexity at the cost of higher error then you might prefer a
configuration where selected_features = 1.

You can select one configuration and pass it to a learner for training using
$result_learner_param_vals, so if we want to select the second configuration we would
run:

learner = lrn("classif.rpart")
learner$param_set$values = instance$result_learner_param_vals[[2]]

As multi-objective tuning requires manual intervention to select a configuration, it is cur-
rently not possible to use auto_tuner().

5.3 Multi-Fidelity Tuning via Hyperband
Increasingly large datasets and search spaces and increasingly complex models make hyper-
parameter optimization a time-consuming and computationally expensive task. To tackle
this, some HPO methods make use of evaluating a configuration at multiple fidelity levels.
Multi-fidelity HPOMulti-

fidelity HPO
is motivated by the idea that the performance of a lower-fidelity model

is indicative of the full-fidelity model, which can be used to make HPO more efficient (as
we will soon see with Hyperband).

To unpack what these terms mean and to motivate multi-fidelity tuning, say that we think
a gradient boosting algorithm with up to 1000 rounds will be a very good fit to our training

https://mlr3tuning.mlr-org.com/reference/auto_tuner.html
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data. However, we are concerned this model will take too long to tune and train. Therefore,
we want to gauge the performance of this model using a similar model that is quicker to
train by setting a smaller number of rounds. In this example, the hyperparameter controlling
the number of rounds is a fidelity parameter, as it controls the tradeoff between model
performance and speed. The different configurations of this parameter are known as fidelity
levels. We refer to the model with 1000 rounds as the model at full-fidelity and we want
to approximate this model’s performance using models at different fidelity levels. Lower
fidelity levels result in low-fidelity models that are quicker to train but may poorly predict
the full-fidelity model’s performance. On the other hand, higher fidelity levels result in high-
fidelity models that are slower to train but may better indicate the full-fidelity model’s
performance.

Other common models that have natural fidelity parameters include neural networks (num-
ber of epochs) and random forests (number of trees). The proportion of data to subsample
before running any algorithm can also be viewed as a model-agnostic fidelity parameter, we
will return to this in Section 8.4.4.

5.3.1 Hyperband and Successive Halving
A popular multi-fidelity HPO algorithm is Hyperband (Li et al. 2018). After having eval-
uated randomly sampled configurations on low fidelities, Hyperband iteratively allocates
more resources to promising configurations and terminates low-performing ones early. Hy-
perband builds upon the Successive Halving algorithm by Jamieson and Talwalkar (2016).
Successive Halving is initialized with a number of starting configurations 𝑚0, the propor-
tion of configurations discarded in each stage 𝜂, and the minimum, 𝑟0, and maximum, 𝑟𝑚𝑎𝑥,
budget (fidelity) of a single evaluation. The algorithm starts by sampling 𝑚0 random config-
urations and allocating the minimum budget 𝑟0 to them. The configurations are evaluated
and 𝜂−1

𝜂 of the worst-performing configurations are discarded. The remaining configurations
are promoted to the next stage, or ‘bracket’, and evaluated on a larger budget. This con-
tinues until one or more configurations are evaluated on the maximum budget 𝑟𝑚𝑎𝑥 and
the best-performing configuration is selected. The total number of stages is calculated so
that each stage consumes approximately the same overall budget. A big disadvantage of
this method is that it is unclear if it is better to start with many configurations (large 𝑚0)
and a small budget or fewer configurations (small 𝑚0) but a larger budget.

Hyperband solves this problem by running Successive Halving with different numbers of
starting configurations, each at different budget levels 𝑟0. The algorithm is initialized with
the same 𝜂 and 𝑟𝑚𝑎𝑥 parameters (but not 𝑚0). Each bracket starts with a different budget,
𝑟0, where smaller values mean that more configurations can be evaluated and so the most
exploratory bracket (i.e., the one with the most number of stages) is allocated the global
minimum budget 𝑟𝑚𝑖𝑛. In each bracket, the starting budget increases by a factor of 𝜂 until
the last bracket essentially performs a random search with the full budget 𝑟𝑚𝑎𝑥. The total
number of brackets, 𝑠𝑚𝑎𝑥 + 1, is calculated as 𝑠𝑚𝑎𝑥 = log𝜂

𝑟𝑚𝑎𝑥
𝑟𝑚𝑖𝑛

. The number of starting
configurations 𝑚0 of each bracket are calculated so that each bracket uses approximately
the same amount of budget. The optimal hyperparameter configuration in each bracket is
the configuration with the best performance in the final stage. The optimal hyperparameter
configuration at the end of tuning is the configuration with the best performance across all
brackets.

An example Hyperband schedule is given in Table 5.1 where 𝑠 = 3 is the most exploratory
bracket and 𝑠 = 0 essentially performs a random search using the full budget. Table 5.2
demonstrates how this schedule may look if we were to tune 20 different hyperparameter
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configurations; note that each entry in the table is a unique ID referring to a possible
configuration of multiple hyperparameters to tune.

Table 5.1: Hyperband schedule with the number of configurations, 𝑚𝑖, and resources, 𝑟𝑖, for
each bracket, 𝑠, and stage, 𝑖, when 𝜂 = 2, 𝑟𝑚𝑖𝑛 = 1 and 𝑟𝑚𝑎𝑥 = 8.

𝑠 = 3 𝑠 = 2 𝑠 = 1 𝑠 = 0
𝑖 𝑚𝑖 𝑟𝑖 𝑚𝑖 𝑟𝑖 𝑚𝑖 𝑟𝑖 𝑚𝑖 𝑟𝑖

0 8 1 6 2 4 4 4 8
1 4 2 3 4 2 8
2 2 4 1 8
3 1 8

Table 5.2: Hyperparameter configurations in each stage and bracket from the schedule in
Table 5.1. Entries are unique identifiers for tested hyperparameter configurations (HPCs).
𝐻𝑃 𝐶∗

𝑠 is the optimal hyperparameter configuration in bracket 𝑠 and 𝐻𝑃𝐶∗ is the optimal
hyperparameter configuration across all brackets.

𝑠 = 3 𝑠 = 2 𝑠 = 1 𝑠 = 0
𝑖 =
0

{1, 2, 3, 4, 5, 6, 7, 8} {9, 10, 11, 12, 13, 14} {15, 16, 17, 18} {19, 20, 21, 22}

𝑖 =
1

{1, 2, 7, 8} {9, 14, 15} {20, 21}

𝑖 =
2

{1, 8} {15}

𝑖 =
3

{1}

𝐻𝑃 𝐶∗
𝑠 {1} {15} {21} {22}

𝐻𝑃𝐶∗ {15}

5.3.2 mlr3hyperband
The Successive Halving and Hyperband algorithms are implemented in mlr3hyperband as
tnr("successive_halving") and tnr("hyperband") respectively; in this section, we will
only showcase the Hyperband method.

By example, we will optimize lrn("classif.xgboost") on tsk("sonar") and use the
number of boosting iterations (nrounds) as the fidelity parameter, this is a suitable choice
as increasing iterations increases model training time but generally also improves perfor-
mance. Hyperband will allocate increasingly more boosting iterations to well-performing
hyperparameter configurations.

We will load the learner and define the search space. We specify a range from 16 (𝑟𝑚𝑖𝑛)
to 128 (𝑟𝑚𝑎𝑥) boosting iterations and tag the parameter with "budget" to identify it as a
fidelity parameter. For the other hyperparameters, we take the search space for XGBoost
from Bischl et al. (2023), which usually works well for a wide range of datasets.

library(mlr3hyperband)

https://mlr3hyperband.mlr-org.com
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learner = lrn("classif.xgboost")
learner$param_set$set_values(
nrounds = to_tune(p_int(16, 128, tags = "budget")),
eta = to_tune(1e-4, 1, logscale = TRUE),
max_depth = to_tune(1, 20),
colsample_bytree = to_tune(1e-1, 1),
colsample_bylevel = to_tune(1e-1, 1),
lambda = to_tune(1e-3, 1e3, logscale = TRUE),
alpha = to_tune(1e-3, 1e3, logscale = TRUE),
subsample = to_tune(1e-1, 1)

)

We now construct the tuning instance and a hyperband tuner with eta = 2. We use
trm("none") and set the repetitions control parameter to 1 so that Hyperband can
terminate itself after all brackets have been evaluated a single time. Note that setting
repetition = Inf can be useful if you want a terminator to stop the optimization, for
example, based on runtime. The hyperband_schedule() function can be used to display
the schedule across the given fidelity levels and budget increase factor.

instance = ti(
task = tsk("sonar"),
learner = learner,
resampling = rsmp("holdout"),
measures = msr("classif.ce"),
terminator = trm("none")

)

tuner = tnr("hyperband", eta = 2, repetitions = 1)

hyperband_schedule(r_min = 16, r_max = 128, eta = 2)

bracket stage budget n
1: 3 0 16 8
2: 3 1 32 4
3: 3 2 64 2
4: 3 3 128 1
5: 2 0 32 6
6: 2 1 64 3
7: 2 2 128 1
8: 1 0 64 4
9: 1 1 128 2
10: 0 0 128 4

Finally, we can tune as normal and print the result and archive. Note that the archive
resulting from a Hyperband run contains the additional columns bracket and stage which
break down the results by the corresponding bracket and stage.

tuner$optimize(instance)

Warning in .__Codomain__maximization_to_minimization(self = self, private = private, : 'maximization_to_minimization' is deprecated.

https://mlr3hyperband.mlr-org.com/reference/hyperband_schedule.html
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Use 'direction' instead.
See help("Deprecated")
Warning in .__Codomain__maximization_to_minimization(self = self, private = private, : 'maximization_to_minimization' is deprecated.
Use 'direction' instead.
See help("Deprecated")
Warning in .__Codomain__maximization_to_minimization(self = self, private = private, : 'maximization_to_minimization' is deprecated.
Use 'direction' instead.
See help("Deprecated")

alpha colsample_bylevel colsample_bytree eta lambda max_depth
1: -5.404 0.5301 0.4068 -3.302 -1.454 12
5 variable(s) not shown: [nrounds, subsample, learner_param_vals, x_domain, classif.ce]

instance$result[, .(classif.ce, nrounds)]

classif.ce nrounds
1: 0.2174 32

as.data.table(instance$archive)[,
.(bracket, stage, classif.ce, eta, max_depth, colsample_bytree)]

bracket stage classif.ce eta max_depth colsample_bytree
1: 3 0 0.3188 -7.9211 9 0.9664
2: 3 0 0.5072 -0.8478 10 0.6809
3: 3 0 0.2899 -3.9656 15 0.1551
4: 3 0 0.2609 -4.1605 19 0.4690
5: 3 0 0.3043 -8.1343 13 0.4833
---
31: 0 0 0.3333 -8.1458 15 0.3877
32: 3 3 0.2174 -2.0081 3 0.6609
33: 2 2 0.2174 -3.3023 12 0.4068
34: 1 1 0.2609 -4.0957 7 0.7380
35: 1 1 0.3043 -6.6642 8 0.8440

5.4 Bayesian Optimization
In this section, we will take a deep dive into Bayesian optimization (BO), also known as
Model Based Optimization (MBO). The design of BO is more complex than what we have
seen so far in other tuning methods so to help motivate this we will spend a little more time
in this section on theory and methodology.

In hyperparameter optimization (Chapter 4), learners are passed a hyperparameter configu-
ration and evaluated on a given task via a resampling technique to estimate its generalization
performance with the goal to find the optimal hyperparameter configuration. In general, no
analytical description for the mapping from hyperparameter configuration to performance
exists and gradient information is also not available. HPO is, therefore, a prime example for
black box optimizationBlack Box

Optimiza-
tion

, which considers the optimization of a function whose mathematical
structure and analytical description is unknown or unexploitable. As a result, the only ob-
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servable information is the output value (i.e., generalization performance) of the function
given an input value (i.e., hyperparameter configuration). In fact, as evaluating the perfor-
mance of a learner can take a substantial amount of time, HPO is quite an expensive black
box optimization problem. Black box optimization problems occur in the real-world, for
example they are encountered quite often in engineering such as in modeling experiments
like crash tests or chemical reactions.

Many optimization algorithm classes exist that can be used for black box optimization,
which differ in how they tackle this problem; for example we saw in Chapter 4 methods in-
cluding grid/random search and briefly discussed evolutionary strategies. Bayesian optimiza-
tion refers to a class of sample-efficient iterative global black box optimization algorithms
that rely on a ‘surrogate model’ trained on observed data to model the black box function.
This surrogate model is typically a non-linear regression model that tries to capture the
unknown function using limited observed data. During each iteration, BO algorithms em-
ploy an ‘acquisition function’ to determine the next candidate point for evaluation. This
function measures the expected ‘utility’ of each point within the search space based on the
prediction of the surrogate model. The algorithm then selects the candidate point with the
best acquisition function value and evaluates the black box function at that point to then
update the surrogate model. This iterative process continues until a termination criterion
is met, such as reaching a pre-specified maximum number of evaluations or achieving a de-
sired level of performance. BO is a powerful method that often results in good optimization
performance, especially if the cost of the black box evaluation becomes expensive and the
optimization budget is tight.

In the rest of this section, we will first provide an introduction to black box optimization
with the bbotk package and then introduce the building blocks of BO algorithms and
examine their interplay and interaction during the optimization process before we assemble
these building blocks in a ready to use black box optimizer with mlr3mbo. Readers who are
primarily interested in how to utilize BO for HPO without delving deep into the underlying
building blocks may want to skip to Section 5.4.4. Detailed introductions to black box
optimization and BO are given in Bischl et al. (2023), Feurer and Hutter (2019) and Garnett
(2022).

As a running example throughout this section, we will optimize the sinusoidal function
𝑓 ∶ [0, 1] → ℝ, 𝑥 ↦ 2𝑥 ∗ sin(14𝑥) (Figure 5.2), which is characterized by two local minima
and one global minimum.

5.4.1 Black Box Optimization
The bbotk (black box optimization toolkit) package is the workhorse package for general
black box optimization within the mlr3 ecosystem. At the heart of the package are the R6
classes:

• OptimInstanceBatchSingleCrit and OptimInstanceBatchMultiCrit, which are used
to construct an optimization instance Optimiza-

tion
Instance

that describes the optimization problem and stores
the results

• OptimizerBatch which is used to construct and configure optimization algorithms.

These classes might look familiar after reading Chapter 4, and in fact
TuningInstanceBatchSingleCrit and TuningInstanceBatchMultiCrit inherit
from OptimInstanceBatchSingle/MultiCrit and TunerBatch is closely based on
OptimizerBatch.

OptimInstanceBatchSingleCrit relies on an Objective Objectivefunction that wraps the actual

https://bbotk.mlr-org.com
https://mlr3mbo.mlr-org.com
https://bbotk.mlr-org.com
https://bbotk.mlr-org.com/reference/OptimInstanceBatchSingleCrit.html
https://bbotk.mlr-org.com/reference/OptimInstanceBatchMultiCrit.html
https://bbotk.mlr-org.com/reference/OptimizerBatch.html
https://mlr3tuning.mlr-org.com/reference/TuningInstanceBatchSingleCrit.html
https://mlr3tuning.mlr-org.com/reference/TuningInstanceBatchMultiCrit.html
https://mlr3tuning.mlr-org.com/reference/TunerBatch.html
https://bbotk.mlr-org.com/reference/Objective.html
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mapping from a domain (all possible function inputs) to a codomain (all possible function
outputs).

Objective functions can be created using different classes, all of which inherit from
Objective. These classes provide different ways to define and evaluate objective functions
and picking the right one will reduce type conversion overhead:

• ObjectiveRFun wraps a function that takes a list describing a single configuration as input
where elements can be of any type. It is suitable when the underlying function evaluation
mechanism is given by evaluating a single configuration at a time.

• ObjectiveRFunMany wraps a function that takes a list of multiple configurations as input
where elements can be of any type and even mixed types. It is useful when the function
evaluation of multiple configurations can be parallelized.

• ObjectiveRFunDt wraps a function that operates on a data.table. It allows for efficient
vectorized or batched evaluations directly on the data.table object, avoiding unnecessary
data type conversions.

To start translating our problem to code we will use the ObjectiveRFun class to take a single
configuration as input. The Objective requires specification of the function to optimize its
domain and codomain. By tagging the codomain with "minimize" or "maximize" we specify
the optimization direction. Note how below our optimization function takes a list as an
input with one element called x.

library(bbotk)
sinus_1D = function(xs) 2 * xs$x * sin(14 * xs$x)

domain = ps(x = p_dbl(lower = 0, upper = 1))
codomain = ps(y = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(sinus_1D,
domain = domain, codomain = codomain)

We can visualize our objective by generating a grid of points on which we evaluate the
function (Figure 5.2), this will help us identify its local minima and global minimum.

library(ggplot2)

xydt = generate_design_grid(domain, resolution = 1001)$data
xydt[, y := objective$eval_dt(xydt)$y]
optima = data.table(x = c(0, 0.3509406, 0.7918238))
optima[, y := objective$eval_dt(optima)$y]
optima[, type := c("local", "local", "global")]

ggplot(aes(x = x, y = y), data = xydt) +
geom_line() +
geom_point(aes(pch = type), color = "black", size = 4, data = optima) +
theme_minimal() +
theme(legend.position = "none")

https://bbotk.mlr-org.com/reference/Objective.html
https://bbotk.mlr-org.com/reference/ObjectiveRFun.html
https://bbotk.mlr-org.com/reference/ObjectiveRFunMany.html
https://bbotk.mlr-org.com/reference/ObjectiveRFunDt.html
https://bbotk.mlr-org.com/reference/ObjectiveRFun.html
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Figure 5.2: Visualization of the sinusoidal function. Local minima in triangles and global
minimum in the circle.

The global minimizer, 0.792, corresponds to the point of the domain with the lowest function
value:

xydt[y == min(y), ]

x y
1: 0.792 -1.577

With the objective function defined, we can proceed to optimize it using
OptimInstanceBatchSingleCrit. This class allows us to wrap the objective func-
tion and explicitly specify a search space. The search space defines the set of input values
we want to optimize over, and it is typically a subset or transformation of the domain,
though by default the entire domain is taken as the search space. In black box optimization,
it is common for the domain, and hence also the search space, to have finite box constraints.
Similarly to HPO, transformations can sometimes be used to more efficiently search the
space (Section 4.1.5).

In the following, we use a simple random search to optimize the sinusoidal function over the
whole domain and inspect the result from the instance in the usual way (Section 4.1.4).
An optimization instance is constructed with the oi() function. Analogously to tuners,
Optimizers in bbotk are stored in the mlr_optimizers dictionary and can be constructed
with opt() opt().

instance = oi(objective,
search_space = domain,
terminator = trm("evals", n_evals = 20))

optimizer = opt("random_search", batch_size = 20)
optimizer$optimize(instance)

https://bbotk.mlr-org.com/reference/oi.html
https://bbotk.mlr-org.com/reference/mlr_optimizers.html
https://bbotk.mlr-org.com/reference/opt.html
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Similarly to how we can use tune() to construct a tuning instance, here we can use
bb_optimize(), which returns a list with elements "par" (best found parameters), "val"
(optimal outcome), and "instance" (the optimization instance); the values given as "par"
and "val" are the same as the values found in instance$result:

optimal = bb_optimize(objective, method = "random_search",
max_evals = 20)

optimal$instance$result

x x_domain y
1: 0.7496 <list[1]> -1.315

Now we have introduced the basic black box optimization setup, we can introduce the
building blocks of any Bayesian optimization algorithm.

5.4.2 Building Blocks of Bayesian Optimization
Bayesian optimization (BO) is a global optimization algorithm that usually follows the
following process (Figure 5.3):

1. Generate and evaluate an initial design
2. Loop:

a. Fit a surrogate model on the archive of all observations made so far to model
the unknown black box function.

b. Optimize an acquisition function to determine which points of the search
space are promising candidate(s) that should be evaluated next.

c. Evaluate the next candidate(s) and update the archive of all observations
made so far.

d. Check if a given termination criterion is met, if not go back to (a).

The acquisition function relies on the mean and standard deviation prediction of the surro-
gate model and requires no evaluation of the true black box function, making it comparably
cheap to optimize. A good acquisition function will balance exploiting knowledge about
regions where we observed that performance is good and the surrogate model has low un-
certainty, with exploring regions where it has not yet evaluated points and as a result the
uncertainty of the surrogate model is high.

We refer to these elements as the ‘building blocks’ of BO as it is a highly modular algorithm;
as long as the above structure is in place, then the surrogate models, acquisition functions,
and acquisition function optimizers are all interchangeable to a certain extent. The design of
mlr3mbo reflects this modularity, with the base class for OptimizerMbo holding all the key
elements: the BO algorithm loop structure (loop_function), surrogate model (Surrogate),
acquisition function (AcqFunction), and acquisition function optimizer (AcqOptimizer). In
this section, we will provide a more detailed explanation of these building blocks and explore
their interplay and interaction during optimization.

5.4.2.1 The Initial Design

Before we can fit a surrogate model to model the unknown black box function, we need data.
The initial set of points that is evaluated before a surrogate model can be fit is referred to
as the initial design.

https://mlr3tuning.mlr-org.com/reference/tune.html
https://bbotk.mlr-org.com/reference/bb_optimize.html
https://mlr3mbo.mlr-org.com/reference/mlr_optimizers_mbo.html
https://mlr3mbo.mlr-org.com/reference/loop_function.html
https://mlr3mbo.mlr-org.com/reference/Surrogate.html
https://mlr3mbo.mlr-org.com/reference/AcqFunction.html
https://mlr3mbo.mlr-org.com/reference/AcqOptimizer.html
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Figure 5.3: Bayesian optimization loop.

mlr3mbo allows you to either construct the initial design manually or let a loop_function
construct and evaluate this for you. In this section, we will demonstrate the first method,
which requires more user input but therefore allows more control over the initial design.

A simple method to construct an initial design is to use one of the four design generators
in paradox:

• generate_design_random(): Generate points uniformly at random
• generate_design_grid(): Generate points in a uniform-sized grid
• generate_design_lhs(): Latin hypercube sampling (Stein 1987)
• generate_design_sobol(): Sobol sequence (Niederreiter 1988)

Figure 5.4 illustrates the difference in generated designs from these four methods assuming
an initial design of size nine and a domain of two numeric variables from 0 to 1. We already
covered the difference between grid and random designs in Section 4.1.4. An LHS design
divides each input variable into equally sized intervals (indicated by the horizontal and
vertical dotted lines in Figure 5.4) and ensures that each interval is represented by exactly
one sample point, resulting in uniform marginal distributions. Furthermore, in LHS designs
the minimal distance between two points is usually maximized, resulting in its space-filling
coverage of the space. The Sobol design works similarly to LHS but can provide better
coverage than LHS when the number of dimensions is large. For this reason, LHS or Sobol
designs are usually recommended for BO, but usually the influence of the initial design
will be smaller compared to other design choices of BO. A random design might work
well-enough, but grid designs are usually discouraged.

Whichever of these methods you choose, the result is a Design object, which is mostly just
a wrapper around a data.table:

sample_domain = ps(x1 = p_dbl(0, 1), x2 = p_dbl(0, 1))
generate_design_random(sample_domain, n = 3)$data

x1 x2
1: 0.8727 0.6231
2: 0.5546 0.3110
3: 0.7377 0.3922

Therefore you could also specify a completely custom initial design by defining your own
data.table. Either way, when manually constructing an initial design (as opposed to letting
loop_function automate this), it needs to be evaluated on the OptimInstance before
optimizing it. Returning to our running example of minimizing the sinusoidal function, we
will evaluate a custom initial design with $eval_batch():

https://mlr3mbo.mlr-org.com/reference/loop_function.html
https://paradox.mlr-org.com
https://paradox.mlr-org.com/reference/generate_design_random.html
https://paradox.mlr-org.com/reference/generate_design_grid.html
https://paradox.mlr-org.com/reference/generate_design_lhs.html
https://paradox.mlr-org.com/reference/generate_design_sobol.html
https://paradox.mlr-org.com/reference/Design.html
https://bbotk.mlr-org.com/reference/OptimInstance.html
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Figure 5.4: Comparing different samplers for constructing an initial design of nine points on
a domain of two numeric variables ranging from 0 to 1. Dotted horizontal and vertical lines
partition the domain into equally sized bins. Histograms on the top and right visualize the
marginal distributions of the generated sample.

instance = OptimInstanceSingleCrit$new(objective,
terminator = trm("evals", n_evals = 20))

OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead.

design = data.table(x = c(0.1, 0.34, 0.65, 1))
instance$eval_batch(design)
instance$archive$data

x y x_domain timestamp batch_nr
1: 0.10 0.1971 <list[1]> 2025-06-18 09:46:02 1
2: 0.34 -0.6792 <list[1]> 2025-06-18 09:46:02 1
3: 0.65 0.4148 <list[1]> 2025-06-18 09:46:02 1
4: 1.00 1.9812 <list[1]> 2025-06-18 09:46:02 1

We can see how each point in our design was evaluated by the sinusoidal function, giving
us data we can now use to start the iterative BO algorithm by fitting the surrogate model
on that data.

5.4.2.2 Surrogate Model

A surrogate model wraps a regression learner that models the unknown black box function
based on observed data. In mlr3mbo, the SurrogateLearner is a higher-level R6 class in-
heriting from the base Surrogate class, designed to construct and manage the surrogate
model, including automatic construction of the TaskRegr that the learner should be trained
on at each iteration of the BO loop.

https://mlr3mbo.mlr-org.com/reference/SurrogateLearner.html
https://mlr3mbo.mlr-org.com/reference/Surrogate.html
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Any regression learner in mlr3 can be used. However, most acquisition functions depend on
both mean and standard deviation predictions from the surrogate model, the latter of which
requires the "se" predict_type to be supported. Therefore not all learners are suitable for
all scenarios. Typical choices of regression learners used as surrogate models include Gaus-
sian processes (lrn("regr.km")) for low to medium dimensional numeric search spaces
and random forests (e.g., lrn("regr.ranger")) for higher dimensional mixed (and/or hi-
erarchical) search spaces. A detailed introduction to Gaussian processes can be found in
Williams and Rasmussen (2006) and an in-depth focus on Gaussian processes in the context
of surrogate models in BO is given in Garnett (2022). In this example, we use a Gaussian
process with Matérn 5/2 kernel, which uses BFGS as an optimizer to find the optimal kernel
parameters and set trace = FALSE to prevent too much output during fitting.

lrn_gp = lrn("regr.km", covtype = "matern5_2", optim.method = "BFGS",
control = list(trace = FALSE))

A SurrogateLearner can be constructed by passing a LearnerRegr object to the sugar
function srlrn() srlrn(), alongside the archive of the instance:

library(mlr3mbo)
surrogate = srlrn(lrn_gp, archive = instance$archive)

Internally, the regression learner is fit on a TaskRegr where features are the variables of the
domain and the target is the codomain, the data is from the Archive of the OptimInstance
that is to be optimized.

In our running example we have already initialized our archive with the initial design, so
we can update our surrogate model, which essentially fits the Gaussian process, note how
we use $learner to access the wrapped model:

surrogate$update()
surrogate$learner$model

Call:
DiceKriging::km(design = data, response = task$truth(), covtype = "matern5_2",

optim.method = "BFGS", control = pv$control)

Trend coeff.:
Estimate

(Intercept) 0.7899

Covar. type : matern5_2
Covar. coeff.:

Estimate
theta(x) 0.3014

Variance estimate: 1.07

Having introduced the concept of a surrogate model, we can now move on to the acquisition
function, which makes use of the surrogate model predictions to decide which candidate to
evaluate next.

https://bbotk.mlr-org.com/reference/Archive.html
https://bbotk.mlr-org.com/reference/OptimInstance.html
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5.4.2.3 Acquisition Function

Roughly speaking, an acquisition function relies on the prediction of a surrogate model and
quantifies the expected ‘utility’ of each point of the search space if it were to be evaluated
in the next iteration.

A popular example is the expected improvement (Jones, Schonlau, and Welch 1998), which
tells us how much we can expect a candidate point to improve over the best function value
observed so far (the ‘incumbent’), given the performance prediction of the surrogate model:

𝛼EI(x) = 𝔼 [max (𝑓min − 𝑌 (x), 0)]

Here, 𝑌 (x) is the surrogate model prediction (a random variable) for a given point x (which
when using a Gaussian process follows a normal distribution) and 𝑓min is the best function
value observed so far (assuming minimization). Calculating the expected improvement re-
quires mean and standard deviation predictions from the model.

In mlr3mbo, acquisition functions (of class AcqFunction) are stored in the
mlr_acqfunctions dictionary and can be constructed with acqf()acqf() , passing the key
of the method you want to use and our surrogate learner. In our running example, we will
use the expected improvement (acqf("ei")) to choose the next candidate for evaluation.
Before we can do that, we have to update ($update()) the AcqFunction’s view of the
incumbent, to ensure it is still using the best value observed so far.

acq_function = acqf("ei", surrogate = surrogate)
acq_function$update()
acq_function$y_best

[1] -0.6792

You can use $eval_dt() to evaluate the acquisition function for the domain given as a
data.table. In Figure 5.5 we evaluated the expected improvement on a uniform grid of
points between 0 and 1 using the predicted mean and standard deviation from the Gaussian
process. We can see that the expected improvement is high in regions where the mean
prediction (gray dashed lines) of the Gaussian process is low, or where the uncertainty is
high.

xydt = generate_design_grid(domain, resolution = 1001)$data
# evaluate our sinusoidal function
xydt[, y := objective$eval_dt(xydt)$y]
# evaluate expected improvement
xydt[, ei := acq_function$eval_dt(xydt[, "x"])]
# make predictions from our data
xydt[, c("mean", "se") := surrogate$predict(xydt[, "x"])]
xydt[1:3]

x y ei mean se
1: 0.000 0.000000 4.642e-05 0.5191 0.3632
2: 0.001 0.000028 4.171e-05 0.5166 0.3597
3: 0.002 0.000112 3.738e-05 0.5142 0.3562

https://mlr3mbo.mlr-org.com/reference/AcqFunction.html
https://mlr3mbo.mlr-org.com/reference/mlr_acqfunctions.html
https://mlr3mbo.mlr-org.com/reference/acqf.html
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ggplot(xydt, mapping = aes(x = x, y = y)) +
geom_point(size = 2, data = instance$archive$data) +
geom_line() +
geom_line(aes(y = mean), colour = "gray", linetype = 2) +
geom_ribbon(aes(min = mean - se, max = mean + se),

fill = "gray", alpha = 0.3) +
geom_line(aes(y = ei * 40), linewidth = 1, colour = "darkgray") +
scale_y_continuous("y",

sec.axis = sec_axis(~ . * 0.025, name = "EI",
breaks = c(0, 0.025, 0.05))) +

theme_minimal()
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Figure 5.5: Expected improvement (solid dark gray line) based on the mean and uncertainty
prediction (dashed gray line) of the Gaussian process surrogate model trained on an initial
design of four points (black). Ribbons represent the mean plus minus the standard deviation
prediction.

We will now proceed to optimize the acquisition function itself to find the candidate with
the largest expected improvement.

5.4.2.4 Acquisition Function Optimizer

An acquisition function optimizer of class AcqOptimizer
AcqOptimizer

is used to optimize the acquisi-
tion function by efficiently searching the space of potential candidates within a limited
computational budget.

Due to the non-convex nature of most commonly used acquisition functions (Garnett 2022)
it is typical to employ global optimization techniques for acquisition function optimization.
Widely used approaches for optimizing acquisition functions include derivative-free global
optimization methods like branch and bound algorithms, such as the DIRECT algorithm
(Jones, Perttunen, and Stuckman 1993), as well as multi-start local optimization methods,

https://mlr3mbo.mlr-org.com/reference/AcqOptimizer.html
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such as running the L-BFGS-B algorithm (Byrd et al. 1995) or a local search multiple
times from various starting points (J. Kim and Choi 2021). Consequently the optimization
problem of the acquisition function can be handled as a black box optimization problem
itself, but a much cheaper one than the original.

AcqOptimizer objects are constructed with acqo()acqo() , which takes as input a Optimizer, a
Terminator, and the acquisition function. Optimizers are stored in the mlr_optimizers
dictionary and can be constructed with the sugar function opt()opt() . The terminators are the
same as those introduced in Section 4.1.2.

Below we use the DIRECT algorithm and we terminate the acquisition function optimization
if there is no improvement of at least 1e-5 for 100 iterations. The $optimize() method
optimizes the acquisition function and returns the next candidate.

acq_optimizer = acqo(
optimizer = opt("nloptr", algorithm = "NLOPT_GN_ORIG_DIRECT"),
terminator = trm("stagnation", iters = 100, threshold = 1e-5),
acq_function = acq_function

)

candidate = acq_optimizer$optimize()
candidate

x acq_ei x_domain .already_evaluated
1: 0.4173 0.06074 <list[1]> FALSE

We have now shown how to run a single iteration of the BO algorithm loop manually. In
practice, one would use OptimizerMbo to put all these pieces together to automate the
process. Before demonstrating this class we will first take a step back and introduce the
loop_function which tells the algorithm how it should be run.

5.4.2.5 Using and Building Loop Functions

The loop_function determines the behavior of the BO algorithm on a global level, i.e.,
how to define the subroutine that is performed at each iteration to generate new candidates
for evaluation. Loop functions are relatively simple functions that take as input the classes
that we have just discussed and define the BO loop. Loop functions are stored in the
mlr_loop_functions dictionary. As these are S3 (not R6) classes, they can be simply loaded
by just referencing the key (i.e., there is no constructor required).

as.data.table(mlr_loop_functions)[, .(key, label, instance)]

key label instance
1: bayesopt_ego Efficient Global Optimization single-crit
2: bayesopt_emo Multi-Objective EGO multi-crit
3: bayesopt_mpcl Multipoint Constant Liar single-crit
4: bayesopt_parego ParEGO multi-crit
5: bayesopt_smsego SMS-EGO multi-crit

You could pick and use one of the loop functions included in the dictionary above, or you
can write your own for finer control over the BO process. A common choice of loop function
is the Efficient Global Optimization (EGO) algorithm (Jones, Schonlau, and Welch 1998)
(bayesopt_ego()). A simplified version of this code is shown at the end of this section, both

https://mlr3mbo.mlr-org.com/reference/acqo.html
https://bbotk.mlr-org.com/reference/Optimizer.html
https://bbotk.mlr-org.com/reference/Terminator.html
https://bbotk.mlr-org.com/reference/mlr_optimizers.html
https://bbotk.mlr-org.com/reference/opt.html
https://mlr3mbo.mlr-org.com/reference/mlr_optimizers_mbo.html
https://mlr3mbo.mlr-org.com/reference/loop_function.html
https://mlr3mbo.mlr-org.com/reference/mlr_loop_functions.html
https://mlr3mbo.mlr-org.com/reference/mlr_loop_functions_ego.html
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to help demonstrate the EGO algorithm, and to give an example of how to write a custom
BO variant yourself. In short, the code sets up the relevant components discussed above and
then loops the steps above: 1) update the surrogate model 2) update the acquisition function
3) optimize the acquisition function to yield a new candidate 4) evaluate the candidate and
add it to the archive. If there is an error during the loop then a fallback is used where the
next candidate is proposed uniformly at random, ensuring that the process continues even
in the presence of potential issues, we will return to this in Section 5.4.6.

my_simple_ego = function(
instance,
surrogate,
acq_function,
acq_optimizer,
init_design_size

) {

# setting up the building blocks
surrogate$archive = instance$archive # archive
acq_function$surrogate = surrogate # surrogate model
acq_optimizer$acq_function = acq_function # acquisition function

search_space = instance$search_space

# initial design
design = generate_design_sobol(

search_space, n = init_design_size)$data
instance$eval_batch(design)

# MBO loop
repeat {

candidate = tryCatch({
# update the surrogate model
acq_function$surrogate$update()
# update the acquisition function
acq_function$update()
# optimize the acquisition function to yield a new candidate
acq_optimizer$optimize()

}, mbo_error = function(mbo_error_condition) {
generate_design_random(search_space, n = 1L)$data

})

# evaluate the candidate and add it to the archive
tryCatch({
instance$eval_batch(candidate)

}, terminated_error = function(cond) {
# $eval_batch() throws a terminated_error if the instance is
# already terminated, e.g. because of timeout.

})
if (instance$is_terminated) break

}
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return(instance)
}

We are now ready to put everything together to automate the BO process.

5.4.3 Automating BO with OptimizerMbo
OptimizerMbo can be used to assemble the building blocks described above into a single
object that can then be used for optimization. We use the bayesopt_ego loop function
provided by mlr_loop_functions, which works similarly to the code shown above but
takes more care to offer sensible default values for its arguments and handle edge cases
correctly. You do not need to pass any of these building blocks to each other manually as
the opt()opt() constructor will do this for you:

bayesopt_ego = mlr_loop_functions$get("bayesopt_ego")
surrogate = srlrn(lrn("regr.km", covtype = "matern5_2",
optim.method = "BFGS", control = list(trace = FALSE)))

acq_function = acqf("ei")
acq_optimizer = acqo(opt("nloptr", algorithm = "NLOPT_GN_ORIG_DIRECT"),
terminator = trm("stagnation", iters = 100, threshold = 1e-5))

optimizer = opt("mbo",
loop_function = bayesopt_ego,
surrogate = surrogate,
acq_function = acq_function,
acq_optimizer = acq_optimizer)

Loop Function Arguments

Additional arguments for customizing certain loop functions can be passed through
with the args parameter of opt().

In this example, we will use the same initial design that we created before and will optimize
our sinusoidal function using $optimize():

instance = OptimInstanceSingleCrit$new(objective,
terminator = trm("evals", n_evals = 20))

OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead.

design = data.table(x = c(0.1, 0.34, 0.65, 1))
instance$eval_batch(design)
optimizer$optimize(instance)

x x_domain y
1: 0.7922 <list[1]> -1.577

Using only a few evaluations, BO comes close to the true global optimum (0.792). Figure 5.6
shows the sampling trajectory of candidates as the algorithm progressed, we can see that

https://mlr3mbo.mlr-org.com/reference/mlr_optimizers_mbo.html
https://bbotk.mlr-org.com/reference/opt.html
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focus is increasingly given to more regions around the global optimum. However, even
in later optimization stages, the algorithm still explores new areas, illustrating that the
expected improvement acquisition function indeed balances exploration and exploitation as
we required.
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Figure 5.6: Sampling trajectory of the BO algorithm. Points of the initial design in black
triangles. Sampled points are in dots with color progressing from black to white as the
algorithm progresses.

If we replicate running our BO algorithm ten times (with random initial designs and varying
random seeds) and compare this to a random search, we can see that BO indeed performs
much better and on average reaches the global optimum after around 15 function evalua-
tions (Figure 5.7). As expected, the performance for the initial design size is close to the
performance of the random search.

5.4.4 Bayesian Optimization for HPO
mlr3mbo can be used for HPO by making use of TunerMbo TunerMbo, which is a wrapper around
OptimizerMbo and works in the exact same way. As an example, below we will tune the
cost and gamma parameters of lrn("classif.svm") with a radial kernel on tsk("sonar")
with three-fold CV. We set up tnr("mbo") using the same objects constructed above and
then run our tuning experiment as usual:

tuner = tnr("mbo",
loop_function = bayesopt_ego,
surrogate = surrogate,
acq_function = acq_function,
acq_optimizer = acq_optimizer)

lrn_svm = lrn("classif.svm", kernel = "radial",
type = "C-classification",

https://mlr3mbo.mlr-org.com/reference/mlr_tuners_mbo.html
https://mlr3mbo.mlr-org.com/reference/mlr_optimizers_mbo.html
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Figure 5.7: Anytime performance of BO and random search on the 1D sinusoidal function
given a budget of 20 function evaluations. Solid line depicts the best observed target value
averaged over 10 replications. Ribbons represent standard errors.
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cost = to_tune(1e-5, 1e5, logscale = TRUE),
gamma = to_tune(1e-5, 1e5, logscale = TRUE)

)

instance = tune(tuner, tsk("sonar"), lrn_svm, rsmp("cv", folds = 3),
msr("classif.ce"), 25)

instance$result

cost gamma learner_param_vals x_domain classif.ce
1: 1.277 -3.837 <list[4]> <list[2]> 0.1057

Multi-objective tuning is also possible with BO with algorithms using many different design
choices, for example, whether they use a scalarization approach of objectives and only rely
on a single surrogate model, or fit a surrogate model for each objective. More details on
multi-objective BO can for example be found in Horn et al. (2015) or Morales-Hernández,
Van Nieuwenhuyse, and Rojas Gonzalez (2022).

Below we will illustrate multi-objective tuning using the ParEGO (Knowles 2006) loop func-
tion. ParEGO (bayesopt_parego()) tackles multi-objective BO via a randomized scalar-
ization approach and models a single scalarized objective function via a single surrogate
model and then proceeds to find the next candidate for evaluation making use of a standard
single-objective acquisition function such as the expected improvement. Other compatible
loop functions can be found by looking at the "instance" column of mlr_loop_functions.
We will tune three parameters of a decision tree with respect to the true positive (maximize)
and false positive (minimize) rates, the Pareto front is visualized in Figure 5.8.

tuner = tnr("mbo",
loop_function = bayesopt_parego,
surrogate = surrogate,
acq_function = acq_function,
acq_optimizer = acq_optimizer)

lrn_rpart = lrn("classif.rpart",
cp = to_tune(1e-04, 1e-1),
minsplit = to_tune(2, 64),
maxdepth = to_tune(1, 30)

)

instance = tune(tuner, tsk("sonar"), lrn_svm, rsmp("cv", folds = 3),
msrs(c("classif.tpr", "classif.fpr")), 25)

WARN [09:49:40.025] [bbotk] Task 'surrogate_task' has missing values in column(s) 'y_scal', but learner 'regr.km' does not support this
WARN [09:49:40.026] [bbotk] Could not update the surrogate a final time after the optimization process has terminated.

5.4.5 Noisy Bayesian Optimization
So far, we implicitly assumed that the black box function we are trying to optimize is de-
terministic, i.e., repeatedly evaluating the same point will always return the same objective
function value. However, real-world black box functions are often noisy, which means that
repeatedly evaluating the same point will return different objective function values due to

https://mlr3mbo.mlr-org.com/reference/mlr_loop_functions_parego.html
https://mlr3mbo.mlr-org.com/reference/mlr_loop_functions.html
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Figure 5.8: Pareto front of TPR and FPR obtained via ParEGO. White dots represent
tested configurations, each black dot individually represents a Pareto-optimal configuration
and all black dots together represent the Pareto front.

background noise on top of the black box function. For example, if you were modeling a
machine in a factory to estimate the rate of production, even if all parameters of the ma-
chine were controlled, we would still expect different performance at different times due to
uncontrollable background factors such as environmental conditions.

In bbotk, you can mark an Objective object as noisy by passing the "noisy" tag to
the properties parameter, which allows us to use methods that can treat such objectives
differently.

sinus_1D_noisy = function(xs) {
y = 2 * xs$x * sin(14 * xs$x) + rnorm(1, mean = 0, sd = 0.1)
y

}
domain = ps(x = p_dbl(lower = 0, upper = 1))
codomain = ps(y = p_dbl(tags = "minimize"))
objective_noisy = ObjectiveRFun$new(sinus_1D_noisy,
domain = domain, codomain = codomain, properties = "noisy")

Noisy objectives can be treated in different ways:

1. A surrogate model can be used to incorporate the noise
2. An acquisition function can be used that respects noisiness
3. The final best point(s) after optimization (i.e., the $result field of the instance)

can be chosen in a way to reflect noisiness

In the first case, instead of using an interpolating Gaussian process, we could instead use
Gaussian process regression that estimates the measurement error by setting nugget.estim

https://bbotk.mlr-org.com/reference/Objective.html
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= TRUE:

srlrn(lrn("regr.km", nugget.estim = TRUE))

This will result in the Gaussian process not perfectly interpolating training data and the
standard deviation prediction associated with the training data will be non-zero, reflecting
the uncertainty in the observed function values due to the measurement error. A more in-
depth discussion of noise-free vs. noisy observations in the context of Gaussian processes
can be found in Chapter 2 of Williams and Rasmussen (2006).

For the second option, one example of an acquisition function that respects noisiness is the
Augmented expected improvement (D. Huang et al. 2012) (acqf("aei")) which essentially
rescales the expected improvement, taking measurement error into account.

Finally, mlr3mbo allows for explicitly specifying how the final result after optimization is
assigned to the instance (i.e., what will be saved in instance$result) with a result as-
signer Result

Assigner
, which can be specified during the construction of an OptimizerMbo or TunerMbo.

ResultAssignerSurrogate uses a surrogate model to predict the mean of all evaluated
points and proceeds to choose the point with the best mean prediction as the final opti-
mization result. In contrast, the default method, ResultAssignerArchive, just picks the
best point according to the evaluations logged in archive. Result assigners are stored in
the mlr_result_assigners dictionary and can be constructed with ras().

opt("mbo",
loop_function = bayesopt_ego,
surrogate = surrogate,
acq_function = acq_function,
acq_optimizer = acq_optimizer,
result_assigner = ras("surrogate")

)

5.4.6 Practical Considerations in Bayesian Optimization
mlr3mbo tries to use reasonable defaults regarding the choice of surrogate model, acquisition
function, acquisition function optimizer and even the loop function. For example, in the case
of a purely numeric search space, mlr3mbo will by default use a Gaussian process as the
surrogate model and a random forest as the fallback learner and additionally encapsulates
the learner (Section 5.1.1). In the case of a mixed or hierarchical search space, mlr3mbo
will use a random forest as the surrogate model. Therefore, users can perform BO without
specifying any deviation from the defaults and still expect decent optimization performance.
To see an up-to-date overview of these defaults, take a look at the help page of mbo_defaults.
We will finish this section with some practical considerations to think about when using
BO.

Error Handling

In the context of BO, there is plenty of room for potential failure of building blocks which
could break the whole process. For example, if two points in the training data are too close
to each other, fitting the Gaussian process surrogate model can fail.

mlr3mbo has several built-in safety nets to catch errors. Surrogate includes the
catch_errors configuration control parameter, which, if set to TRUE, catches all errors

https://mlr3mbo.mlr-org.com/reference/mlr_result_assigners_surrogate.html
https://mlr3mbo.mlr-org.com/reference/mlr_result_assigners_archive.html
https://mlr3mbo.mlr-org.com/reference/mlr_result_assigners.html
https://mlr3mbo.mlr-org.com/reference/ras.html
https://mlr3mbo.mlr-org.com/reference/mbo_defaults.html
https://mlr3mbo.mlr-org.com/reference/Surrogate.html


138 Advanced Tuning Methods and Black Box Optimization

that occur during training or updating of the surrogate model. AcqOptimizer also has the
catch_errors configuration control parameter, which can be used to catch all errors that
occur during the acquisition function optimization, either due to the surrogate model failing
to predict or the acquisition function optimizer erroring. If errors are caught in any of these
steps, the standard behavior of any loop_function is to trigger a fallback, which proposes
the next candidate uniformly at random. Note, when setting catch_errors = TRUE for the
AcqOptimizer, it is usually not necessary to also explicitly set catch_errors = TRUE for
the Surrogate, though this may be useful when debugging.

In the worst-case scenario, if all iterations errored, the BO algorithm will simply perform
a random search. Ideally, fallback learners (Section 5.1.1) should also be used, which will
be employed before proposing the next candidate randomly. The value of the acquisition
function is also always logged in the archive of the optimization instance so inspecting this
is a good idea to ensure the algorithm behaved as expected.

Surrogate Models

In practice, users may prefer a more robust BO variant over a potentially better-performing
but unstable variant. Even if the catch_errors parameters are turned on and are never
triggered, that does not guarantee that the BO algorithm ran as intended. For instance,
Gaussian processes are sensitive to the choice of kernel and kernel parameters, typically
estimated through maximum likelihood estimation, suboptimal parameter values can result
in white noise models with a constant mean and standard deviation prediction. In this
case, the surrogate model will not provide useful mean and standard deviation predictions
resulting in poor overall performance of the BO algorithm. Another practical consideration
regarding the choice of surrogate model can be overhead. Fitting a vanilla Gaussian pro-
cess scales cubically in the number of data points and therefore the overhead of the BO
algorithm grows with the number of iterations. Furthermore, vanilla Gaussian processes na-
tively cannot handle categorical input variables or dependencies in the search space (recall
that in HPO we often deal with mixed hierarchical spaces). In contrast, a random forest –
popularly used as a surrogate model in SMAC (Lindauer et al. 2022) – is cheap to train,
quite robust in the sense that it is not as sensitive to its hyperparameters as a Gaussian
process, and can easily handle mixed hierarchical spaces. On the downside, a random forest
is not really Bayesian (i.e., there is no posterior predictive distribution) and suffers from
poor uncertainty estimates and poor extrapolation.

Warmstarting

Warmstarting is a technique in optimization where previous optimization runs are used to
improve the convergence rate and final solution of a new, related optimization run. In BO,
warmstarting can be achieved by providing a set of likely well-performing configurations as
part of the initial design (see, e.g., Feurer, Springenberg, and Hutter 2015). This approach
can be particularly advantageous because it allows the surrogate model to start with prior
knowledge of the optimization landscape in relevant regions. In mlr3mbo, warmstarting is
straightforward by specifying a custom initial design. Furthermore, a convenient feature
of mlr3mbo is the ability to continue optimization in an online fashion even after an opti-
mization run has been terminated. Both OptimizerMbo and TunerMbo support this feature,
allowing optimization to resume on a given instance even if the optimization was previously
interrupted or terminated.

https://mlr3mbo.mlr-org.com/reference/AcqOptimizer.html
https://mlr3mbo.mlr-org.com/reference/loop_function.html
https://mlr3mbo.mlr-org.com/reference/AcqOptimizer.html
https://mlr3mbo.mlr-org.com/reference/mlr_optimizers_mbo.html
https://mlr3mbo.mlr-org.com/reference/mlr_tuners_mbo.html
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Termination

Common termination criteria include stopping after a fixed number of evaluations, once a
given walltime budget has been reached, when performance reaches a certain level, or when
performance improvement stagnates. In the context of BO, it can also be sensible to stop
the optimization if the best acquisition function value falls below a certain threshold. For
instance, terminating the optimization if the expected improvement of the next candidate(s)
is negligible can be a reasonable approach. At the time of publishing, terminators based on
acquisition functions have not been implemented but this feature will be coming soon.

Parallelization

The standard behavior of most BO algorithms is to sequentially propose a single candidate
that should be evaluated next. Users may want to use parallelization to compute candidates
more efficiently. If you are using BO for HPO, then the most efficient method is to paral-
lelize the nested resampling, see Section 10.1.4. Alternatively, if the loop function supports
candidates being proposed in batches (e.g., bayesopt_parego()) then the q argument to
the loop function can be set to propose q candidates in each iteration that can be evaluated
in parallel if the Objective is properly implemented.

5.5 Conclusion
In this chapter, we looked at advanced tuning methods. We started by thinking about the
types of errors that can occur during tuning and how to handle these to ensure your HPO
process does not crash. We presented multi-objective tuning, which can be used to optimize
performance measures simultaneously. We then looked at multi-fidelity tuning, in which the
Hyberband tuner can be used to efficiently tune algorithms by making use of lower-fidelity
evaluations to approximate full-fidelity model performance. We will return to Hyperband in
Section 8.4.4 where we will learn how to make use of pipelines in order to tune any algorithm
with Hyperband. Finally, we took a deep dive into Bayesian optimization to look at how
bbotk, mlr3mbo, and mlr3tuning can be used together to implement complex BO tuning
algorithms in mlr3, allowing for highly flexible and sample-efficient algorithms. In the next
chapter we will look at feature selection and see how mlr3filters and mlr3fselect use a
very similar design interface to mlr3tuning.

Table 5.3: Important classes and functions covered in this chapter with underlying class (if
applicable), class constructor or function, and important class methods (if applicable).

Class Constructor/Function Fields/Methods
Learner lrn $encapsulate();
TuningInstanceBatchMultiCrit ti()/tune() $result;

$archive
TunerHyperband tnr("hyperband") -
Objective -
OptimInstanceBatchSingleCrit
or
OptimInstanceBatchMultiCrit

oi / bb_optimize() $result;
$archive

SurrogateLearner srlrn()

https://bbotk.mlr-org.com
https://mlr3mbo.mlr-org.com
https://mlr3tuning.mlr-org.com
https://mlr3filters.mlr-org.com
https://mlr3fselect.mlr-org.com
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3tuning.mlr-org.com/reference/TuningInstanceBatchMultiCrit.html
https://mlr3tuning.mlr-org.com/reference/ti.html
https://mlr3tuning.mlr-org.com/reference/tune.html
https://mlr3hyperband.mlr-org.com/reference/TunerHyperband.html
https://bbotk.mlr-org.com/reference/Objective.html
https://bbotk.mlr-org.com/reference/OptimInstanceBatchSingleCrit.html
https://bbotk.mlr-org.com/reference/OptimInstanceBatchMultiCrit.html
https://bbotk.mlr-org.com/reference/oi.html
https://bbotk.mlr-org.com/reference/bb_optimize.html
https://mlr3mbo.mlr-org.com/reference/SurrogateLearner.html
https://mlr3mbo.mlr-org.com/reference/srlrn.html
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Class Constructor/Function Fields/Methods
AcqFunction acqf()
AcqOptimizer acqo()
- loop_function -
OptimizerMbo bbotk::opt("mbo")
TunerMbo tnr("mbo")
Design generate_design_random;

generate_design_grid;
generate_design_lhs;
generate_design_sobol;

$data

5.6 Exercises
1. Tune the mtry, sample.fraction, and num.trees hyperparameters of

lrn("regr.ranger") on tsk("mtcars") and evaluate this with a three-fold CV
and the root mean squared error (same as Chapter 4, Exercise 1). Use tnr("mbo")
with 50 evaluations. Compare this with the performance progress of a random
search run from Chapter 4, Exercise 1. Plot the progress of performance over
iterations and visualize the spatial distribution of the evaluated hyperparameter
configurations for both algorithms.

2. Minimize the 2D Rastrigin function 𝑓 ∶ [−5.12, 5.12] × [−5.12, 5.12] → ℝ,
x ↦ 10𝐷 + ∑𝐷

𝑖=1 [𝑥2
𝑖 − 10 cos (2𝜋𝑥𝑖)], 𝐷 = 2 via BO (standard sequential single-

objective BO via bayesopt_ego()) using the lower confidence bound with lambda
= 1 as acquisition function and "NLOPT_GN_ORIG_DIRECT" via opt("nloptr") as
acquisition function optimizer. Use a budget of 40 function evaluations. Run this
with both the “default” Gaussian process surrogate model with Matérn 5/2 ker-
nel, and the “default” random forest surrogate model. Compare their anytime
performance (similarly as in Figure 5.7). You can construct the surrogate models
with default settings using:

surrogate_gp = srlrn(default_gp())
surrogate_rf = srlrn(default_rf())

3. Minimize the following function: 𝑓 ∶ [−10, 10] → ℝ2, 𝑥 ↦ (𝑥2, (𝑥 − 2)2) with
respect to both objectives. Use the ParEGO algorithm. Construct the objective
function using the ObjectiveRFunMany class. Terminate the optimization after
a runtime of 100 evals. Plot the resulting Pareto front and compare it to the
analytical solution, 𝑦2 = (√𝑦1 − 2)2 with 𝑦1 ranging from 0 to 4.

https://mlr3mbo.mlr-org.com/reference/AcqFunction.html
https://mlr3mbo.mlr-org.com/reference/acqf.html
https://mlr3mbo.mlr-org.com/reference/AcqOptimizer.html
https://mlr3mbo.mlr-org.com/reference/acqo.html
https://mlr3mbo.mlr-org.com/reference/loop_function.html
https://mlr3mbo.mlr-org.com/reference/mlr_optimizers_mbo.html
https://mlr3mbo.mlr-org.com/reference/mlr_tuners_mbo.html
https://paradox.mlr-org.com/reference/Design.html
https://paradox.mlr-org.com/reference/generate_design_random.html
https://paradox.mlr-org.com/reference/generate_design_grid.html
https://paradox.mlr-org.com/reference/generate_design_lhs.html
https://paradox.mlr-org.com/reference/generate_design_sobol.html
https://bbotk.mlr-org.com/reference/ObjectiveRFunMany.html
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Feature selection, also known as variable or descriptor selection, is the process of finding a
subset of features to use with a given task and learner. Using an optimal set of features can
have several benefits:

• improved predictive performance, since we reduce overfitting on irrelevant features,
• robust models that do not rely on noisy features,
• simpler models that are easier to interpret,
• faster model fitting, e.g. for model updates,
• faster prediction, and
• no need to collect potentially expensive features.

However, these objectives will not necessarily be optimized by the same set of features and
thus feature selection can be seen as a multi-objective optimization problem. In this chapter,
we mostly focus on feature selection as a means of improving predictive performance, but
also briefly cover the optimization of multiple criteria (Section 6.2.5).

Reducing the number of features can improve models across many scenarios, but it can
be especially helpful in datasets that have a high number of features in comparison to
the number of data points. Many learners perform implicit, also called embedded, feature
selection, e.g. via the choice of variables used for splitting in a decision tree. Most other
feature selection methods are model agnostic, i.e. they can be used together with any learner.
Of the many different approaches to identifying relevant features, we will focus on two
general concepts, which are described in detail below: Filter and Wrapper methods (Guyon
and Elisseeff 2003; Chandrashekar and Sahin 2014).

6.1 Filters
Filter methods are preprocessing steps that can be applied before training a model. A very
simple filter approach could look like this:

1. calculate the correlation coefficient 𝜌 between each feature and a numeric target
variable, and

2. select all features with 𝜌 > 0.2 for further modeling steps.

This approach is a univariate filter because it only considers the univariate relationship
between each feature and the target variable. Further, it can only be applied to regression
tasks with continuous features and the threshold of 𝜌 > 0.2 is quite arbitrary. Thus, more
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advanced filter methods, e.g. multivariate filters based on feature importance, usually per-
form better (Bommert et al. 2020). On the other hand, a benefit of univariate filters is that
they are usually computationally cheaper than more complex filter or wrapper methods.
In the following, we describe how to calculate univariate, multivariate and feature impor-
tance filters, how to access implicitly selected features, how to integrate filters in a machine
learning pipeline and how to optimize filter thresholds.

Filter algorithms select features by assigning numeric scores to each feature, e.g. correlation
between features and target variable, use these to rank the features and select a feature
subset based on the ranking. Features that are assigned lower scores are then omitted in
subsequent modeling steps. All filters are implemented via the package mlr3filters. Below,
we cover how to

• instantiate a Filter object,
• calculate scores for a given task, and
• use calculated scores to select or drop features.

Special cases of filters are feature importance filters (Section 6.1.2) and embedded methods
(Section 6.1.3). Feature importance filters select features that are important according to
the model induced by a selected Learner. They rely on the learner to extract information
on feature importance from a trained model, for example, by inspecting a learned decision
tree and returning the features that are used as split variables, or by computing model-
agnostic feature importance (Chapter 12) values for each feature. Embedded methods use
the feature selection that is implicitly performed by some learners and directly retrieve the
internally selected features from the learner.

Independent Learners and Filters

The learner used in a feature importance or embedded filter is independent of learners
used in subsequent modeling steps. For example, one might use feature importance
of a random forest for feature selection and train a neural network on the reduced
feature set.

Many filter methods are implemented in mlr3filters, including:

• Correlation, calculating Pearson or Spearman correlation between numeric features and
numeric targets (flt("correlation"))

• Information gain, i.e. mutual information of the feature and the target or the reduction
of uncertainty of the target due to a feature (flt("information_gain"))

• Minimal joint mutual information maximization (flt("jmim"))
• Permutation score, which calculates permutation feature importance (see Chapter 12)

with a given learner for each feature (flt("permutation"))
• Area under the ROC curve calculated for each feature separately (flt("auc"))

Most of the filter methods have some limitations, for example, the correlation filter can only
be calculated for regression tasks with numeric features. For a full list of all implemented
filter methods, we refer the reader to https://mlr3filters.mlr-org.com, which also shows
the supported task and features types. A benchmark of filter methods was performed by
Bommert et al. (2020), who recommend not to rely on a single filter method but to try
several ones if the available computational resources allow. If only a single filter method is
to be used, the authors recommend to use a feature importance filter using random forest
permutation importance (see (Section 6.1.2)), similar to the permutation method described
above, but also the JMIM and AUC filters performed well in their comparison.

https://mlr3filters.mlr-org.com
https://www.rdocumentation.org/packages/base/topics/funprog
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3filters.mlr-org.com
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6.1.1 Calculating Filter Values
The first step is to create a new R object using the class of the desired filter method. These
are accessible from the mlr_filters dictionary with the sugar function flt() flt(). Each object
of class Filter has a $calculate()

$calculate()
method, which computes the filter values and ranks

them in a descending order. For example, we can use the information gain filter described
above:

library(mlr3filters)
flt_gain = flt("information_gain")

Such a Filter object can now be used to calculate the filter on tsk("penguins") and get
the results:

tsk_pen = tsk("penguins")
flt_gain$calculate(tsk_pen)

as.data.table(flt_gain)

feature score
1: flipper_length 0.581168
2: bill_length 0.544897
3: bill_depth 0.538719
4: island 0.520157
5: body_mass 0.442880
6: sex 0.007244
7: year 0.000000

This shows that the flipper and bill measurements are the most informative features for
predicting the species of a penguin in this dataset, whereas sex and year are the least
informative. Some filters have hyperparameters that can be changed in the same way as
Learner hyperparameters. For example, to calculate "spearman" instead of "pearson"
correlation with the correlation filter:

flt_cor = flt("correlation", method = "spearman")
flt_cor$param_set

<ParamSet(2)>
id class lower upper nlevels default value

1: use ParamFct NA NA 5 everything [NULL]
2: method ParamFct NA NA 3 pearson spearman

6.1.2 Feature Importance Filters
To use feature importance filters, we can use a learner with with an $importance() method
that reports feature importance. All learners with the property “importance” have this
functionality. A list of all learners with this property can be found with

as.data.table(mlr_learners)[
sapply(properties, function(x) "importance" %in% x)]

https://mlr3filters.mlr-org.com/reference/mlr_filters.html
https://mlr3filters.mlr-org.com/reference/flt.html
https://www.rdocumentation.org/packages/base/topics/funprog
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For some learners, the desired filter method needs to be set as a hyperparameter. For
example, lrn("classif.ranger") comes with multiple integrated methods, which can be
selected during construction: To use the feature importance method "impurity", select it
during learner construction:

lrn("classif.ranger")$param_set$levels$importance

[1] "none" "impurity" "impurity_corrected"
[4] "permutation"

lrn_ranger = lrn("classif.ranger", importance = "impurity")

We first have to remove missing data because the learner cannot handle missing data, i.e. it
does not have the property “missing”. Note we use the $filter() method presented in
Section 2.1.3 here to remove rows; the “filter” name is unrelated to feature filtering, however.

tsk_pen = tsk("penguins")
tsk_pen$filter(tsk_pen$row_ids[complete.cases(tsk_pen$data())])

Now we can use flt("importance") to calculate importance values:

flt_importance = flt("importance", learner = lrn_ranger)
flt_importance$calculate(tsk_pen)
as.data.table(flt_importance)

feature score
1: bill_length 76.375
2: flipper_length 45.349
3: bill_depth 36.306
4: body_mass 26.458
5: island 24.078
6: sex 1.597
7: year 1.216

6.1.3 Embedded Methods
Many learners internally select a subset of the features which they find helpful for prediction,
but ignore other features. For example, a decision tree might never select some features for
splitting. These subsets can be used for feature selection, which we call embedded methods
because the feature selection is embedded in the learner. The selected features (and those
not selected) can be queried if the learner has the "selected_features" property. As above,
we can find those learners with

as.data.table(mlr_learners)[
sapply(properties, function(x) "selected_features" %in% x)]

For example, we can use lrn("classif.rpart"):
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tsk_pen = tsk("penguins")
lrn_rpart = lrn("classif.rpart")
lrn_rpart$train(tsk_pen)
lrn_rpart$selected_features()

[1] "flipper_length" "bill_length" "island"

The features selected by the model can be extracted by a Filter object, where
$calculate() corresponds to training the learner on the given task:

flt_selected = flt("selected_features", learner = lrn_rpart)
flt_selected$calculate(tsk_pen)
as.data.table(flt_selected)

feature score
1: island 1
2: flipper_length 1
3: bill_length 1
4: bill_depth 0
5: sex 0
6: year 0
7: body_mass 0

Contrary to other filter methods, embedded methods just return values of 1 (selected fea-
tures) and 0 (dropped feature).

6.1.4 Filter-Based Feature Selection
After calculating a score for each feature, one has to select the features to be kept or those
to be dropped from further modeling steps. For the "selected_features" filter described
in embedded methods (Section 6.1.3), this step is straight-forward since the methods assign
either a value of 1 for a feature to be kept or 0 for a feature to be dropped. Below, we find
the names of features with a value of 1 and select those features with task$select(). At
first glance it may appear a bit convoluted to have a filter assign scores based on the feature
names returned by $selected_features(), only to turn these scores back into the names
of the features to be kept. However, this approach allows us to use the same interface for all
filter methods, which is especially useful when we want to automate the feature selection
process in pipelines, as we will see in Section 8.4.5.

flt_selected$calculate(tsk_pen)

# select all features used by rpart
keep = names(which(flt_selected$scores == 1))
tsk_pen$select(keep)
tsk_pen$feature_names

[1] "bill_length" "flipper_length" "island"

For filter methods that assign continuous scores, there are essentially two ways to select
features:

• Select the top 𝑘 features; or

https://www.rdocumentation.org/packages/base/topics/funprog
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• Select all features with a score above a threshold 𝜏 .
The first option is equivalent to dropping the bottom 𝑝 − 𝑘 features. For both options, one
has to decide on a threshold, which is often quite arbitrary. For example, to implement the
first option with the information gain filter:

tsk_pen = tsk("penguins")
flt_gain = flt("information_gain")
flt_gain$calculate(tsk_pen)

# select top three features from information gain filter
keep = names(head(flt_gain$scores, 3))
tsk_pen$select(keep)
tsk_pen$feature_names

[1] "bill_depth" "bill_length" "flipper_length"

Or, the second option with 𝜏 = 0.5:

tsk_pen = tsk("penguins")
flt_gain = flt("information_gain")
flt_gain$calculate(tsk_pen)

# select all features with score > 0.5 from information gain filter
keep = names(which(flt_gain$scores > 0.5))
tsk_pen$select(keep)
tsk_pen$feature_names

[1] "bill_depth" "bill_length" "flipper_length" "island"

In Section 8.4.5 we will return to filter-based feature selection and how we can use pipelines
and tuning to automate and optimize the feature selection process.

6.2 Wrapper Methods
Wrapper methods work by fitting models on selected feature subsets and evaluating their
performance (Kohavi and John 1997). This can be done in a sequential fashion, e.g. by
iteratively adding features to the model in sequential forward selection, or in a parallel
fashion, e.g. by evaluating random feature subsets in a random search. Below, we describe
these simple approaches in a common framework along with more advanced methods such
as genetic search. We further show how to select features by optimizing multiple perfor-
mance measures and how to wrap a learner with feature selection to use it in pipelines or
benchmarks.

In more detail, wrapper methods iteratively evaluate subsets of features by resampling a
learner restricted to this feature subset and with a chosen performance metric (with holdout
or a more expensive CV), and using the resulting performance to guide the search. The
specific search strategy iteration is defined by a FSelectorBatch object. A simple example
is the sequential forward selection that starts with computing each single-feature model,

https://mlr3fselect.mlr-org.com/reference/FSelectorBatch.html
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selects the best one, and then iteratively always adds the feature that leads to the largest
performance improvement (Figure 6.1).

Figure 6.1: A binary representation of sequential forward selection with four features. Gray
indicates feature sets that were evaluated, with dark gray indicating the best feature set in
each iteration; white indicates feature sets that were not evaluated. We start at the bottom
with no selected features (all are ‘0’). In the next iteration all features are separately tested
(each is ‘1’ separately) and the best option (darkest in row two) is selected. This continues
for selecting the second, third, and fourth features.

Wrapper methods can be used with any learner, but need to train or even resample the
learner potentially many times, leading to a computationally intensive method. All wrapper
methods are implemented via the package mlr3fselect.

Feature Selection and HPO

The wrapper-based feature selection explained above is very similar to the black box
optimization approach in HPO (Chapter 4), see also Figure 4.1. The major differ-
ence is that we search for well-performing feature subsets instead of hyperparameter
configurations. This similarity is not only true in terms of underlying concepts and
structure, but also with respect to mlr3 classes and API. The API is in many places
nearly identical, we can use the same terminators, results are logged into an archive in
a similar fashion to tuning, and we can also optimize multiple performance measures
to create Pareto-optimal solutions in a similar way

6.2.1 Simple Forward Selection Example
We start with the simple example from above and do sequential forward selection with
tsk("penguins"), similarly to how the sugar function tune() shown in Section 4.2 works,

https://mlr3fselect.mlr-org.com
https://mlr3tuning.mlr-org.com/reference/tune.html
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we can use fselect()fselect() to directly start the optimization and select features.

library(mlr3fselect)

# subset features to ease visualization
tsk_pen = tsk("penguins")
tsk_pen$select(c("bill_depth", "bill_length", "body_mass",
"flipper_length"))

instance = fselect(
fselector = fs("sequential"),
task = tsk_pen,
learner = lrn_rpart,
resampling = rsmp("cv", folds = 3),
measure = msr("classif.acc")

)

To show all analyzed feature subsets and the corresponding performance, we use
as.data.table(instance$archive). In this example, the batch_nr column represents the
iteration of the sequential forward selection and we start by looking at the first iteration.

dt = as.data.table(instance$archive)
dt[batch_nr == 1, 1:5]

bill_depth bill_length body_mass flipper_length classif.acc
1: TRUE FALSE FALSE FALSE 0.7557
2: FALSE TRUE FALSE FALSE 0.7353
3: FALSE FALSE TRUE FALSE 0.7064
4: FALSE FALSE FALSE TRUE 0.7936

We see that the feature flipper_length achieved the highest prediction performance in
the first iteration and is thus selected. We plot the performance over the iterations:

autoplot(instance, type = "performance")

In the plot, we can see that adding a second feature further improves the performance to
over 90%. To see which feature was added, we can go back to the archive and look at the
second iteration:

dt[batch_nr == 2, 1:5]

bill_depth bill_length body_mass flipper_length classif.acc
1: TRUE FALSE FALSE TRUE 0.7907
2: FALSE TRUE FALSE TRUE 0.9331
3: FALSE FALSE TRUE TRUE 0.7878

The improvement in batch three is small so we may even prefer to select a marginally worse
model with two features to reduce data size.

To directly show the best feature set, we can use $result_feature_set which returns the
features in alphabetical order (not order selected):

https://mlr3fselect.mlr-org.com/reference/fselect.html
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Figure 6.2: Model performance in iterations of sequential forward selection.

instance$result_feature_set

[1] "bill_depth" "bill_length" "flipper_length"

At the heart of mlr3fselect are the R6 classes:

• FSelectInstanceBatchSingleCrit, FSelectInstanceBatchMultiCrit: These two
classes describe the feature selection problem and store the results.

• FSelectorBatch: This class is the base class for implementations of feature selection
algorithms.

Internally, the fselect() function creates an FSelectInstanceBatchSingleCrit object
and executes the feature selection with an FSelectorBatch object, based on the selected
method, in this example an FSelectorBatchSequential object. This is similar to what
happens in the tune() function and will be explained in more detail in the following section.
It uses the supplied resampling and measure to evaluate all feature subsets provided by the
FSelectorBatch on the task.

In the following two sections, these classes will be created manually, to learn more about
the mlr3fselect package.

6.2.2 The FSelectInstance Classes
To create an FSelectInstanceBatchSingleCrit object, we use the sugar function fsi() fsi():

instance = fsi(
task = tsk_pen,
learner = lrn_rpart,
resampling = rsmp("cv", folds = 3),
measure = msr("classif.acc"),

https://mlr3fselect.mlr-org.com/reference/FSelectInstanceBatchMultiCrit.html
https://mlr3fselect.mlr-org.com/reference/FSelectorBatch.html
https://mlr3fselect.mlr-org.com/reference/FSelectInstanceBatchSingleCrit.html
https://mlr3fselect.mlr-org.com/reference/FSelectorBatch.html
https://mlr3fselect.mlr-org.com/reference/mlr_fselectors_sequential.html
https://mlr3fselect.mlr-org.com/reference/fsi.html
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terminator = trm("evals", n_evals = 20)
)

Note that we have not selected a feature selection algorithm and thus did not select any
features, yet. We have also supplied a Terminator, which is used to stop the feature selection,
these are the same objects as we saw in Section 4.1.2.

To start the feature selection, we still need to select an algorithm which are defined via the
FSelectorBatch class, described in the next section.

6.2.3 The FSelector Class
The FSelectorBatch class is the base class for different feature selection algorithms. The
following algorithms are currently implemented in mlr3fselect:

• Random search, trying random feature subsets until termination (fs("random_search"))
• Exhaustive search, trying all possible feature subsets (fs("exhaustive_search"))
• Sequential search, i.e. sequential forward or backward selection (fs("sequential"))
• Recursive feature elimination, which uses a learner’s importance scores to iteratively re-

move features with low feature importance (fs("rfe"))
• Design points, trying all user-supplied feature sets (fs("design_points"))
• Genetic search, implementing a genetic algorithm which treats the features as a binary

sequence and tries to find the best subset with mutations (fs("genetic_search"))
• Shadow variable search, which adds permuted copies of all features (shadow vari-

ables), performs forward selection, and stops when a shadow variable is selected
(fs("shadow_variable_search"))

Note that all these methods can be stopped (early) with a terminator, e.g. an exhaustive
search can be stopped after a given number of evaluations. In this example, we will use a
simple random search and retrieve it from the mlr_fselectors dictionary with fs()fs() .

fselector = fs("random_search")

6.2.4 Starting the Feature Selection
To start the feature selection, we pass the FSelectInstanceBatchSingleCrit object to the
$optimize() method of the initialized FSelectorBatch object:

fselector$optimize(instance)

The algorithm proceeds as follows

1. The FSelectorBatch proposes at least one feature subset or may propose mul-
tiple subsets to be evaluated in parallel, which can be controlled via the setting
batch_size.

2. For each feature subset, the given learner is fitted on the task using the provided
resampling and evaluated with the given measure.

3. All evaluations are stored in the archive of the
FSelectInstanceBatchSingleCrit object.

4. The terminator is queried. If the termination criteria are not triggered, go to 1).
5. Determine the feature subset with the best-observed performance.

https://mlr3fselect.mlr-org.com/reference/FSelectorBatch.html
https://mlr3fselect.mlr-org.com/reference/mlr_fselectors.html
https://mlr3fselect.mlr-org.com/reference/fs.html
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6. Store the best feature subset as the result in the instance object.

The best feature subset and the corresponding measured performance can be accessed from
the instance:

as.data.table(instance$result)[, .(features, classif.acc)]

features classif.acc
1: bill_depth,bill_length,flipper_length 0.936

As in the forward selection example above, one can investigate all subset evaluations, which
are stored in the archive of the FSelectInstanceBatchSingleCrit object and can be ac-
cessed by using as.data.table():

as.data.table(instance$archive)[1:5,
.(bill_depth, bill_length, body_mass, flipper_length, classif.acc)]

bill_depth bill_length body_mass flipper_length classif.acc
1: FALSE TRUE FALSE FALSE 0.7558
2: TRUE TRUE TRUE TRUE 0.9360
3: TRUE FALSE FALSE FALSE 0.7153
4: TRUE FALSE TRUE TRUE 0.7993
5: TRUE TRUE TRUE FALSE 0.9244

Now the optimized feature subset can be used to subset the task and fit the model on all
observations:

tsk_pen = tsk("penguins")

tsk_pen$select(instance$result_feature_set)
lrn_rpart$train(tsk_pen)

The trained model can now be used to make a prediction on external data.

6.2.5 Optimizing Multiple Performance Measures
You might want to use multiple criteria to evaluate the performance of the feature subsets.
With mlr3fselect, the result is the collection of all feature subsets which are not Pareto-
dominated by another subset. Again, we point out the similarity with HPO and refer to
multi-objective hyperparameter optimization (see Section 5.2 and Karl et al. (2022)).

In the following example, we will perform feature selection on the sonar dataset. This
time, we will use FSelectInstanceBatchMultiCrit to select a subset of features that has
high sensitivity, i.e. TPR, and high specificity, i.e. TNR. The feature selection process with
multiple criteria is similar to that with a single criterion, except that we select two measures
to be optimized:

instance = fsi(
task = tsk("sonar"),
learner = lrn_rpart,
resampling = rsmp("holdout"),

https://mlr3fselect.mlr-org.com/reference/FSelectInstanceBatchMultiCrit.html
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measure = msrs(c("classif.tpr", "classif.tnr")),
terminator = trm("evals", n_evals = 20)

)

The function fsi creates an instance of FSelectInstanceBatchMultiCrit if more than one
measure is selected. We now create an FSelectorBatch and call the $optimize() function
of the FSelectorBatch with the FSelectInstanceBatchMultiCrit object, to search for
the subset of features with the best TPR and FPR. Note that these two measures cannot
both be optimal at the same time (except for the perfect classifier) and we expect several
Pareto-optimal solutions.

fselector = fs("random_search")
fselector$optimize(instance)

As above, the best feature subsets and the corresponding measured performance can be
accessed from the instance.

as.data.table(instance$result)[, .(features, classif.tpr, classif.tnr)]

features classif.tpr classif.tnr
1: V1,V11,V13,V14,V15,V18,... 0.750 0.7241
2: V1,V10,V11,V12,V13,V14,... 0.875 0.6897
3: V1,V11,V15,V16,V18,V2,... 0.675 0.8276
4: V1,V10,V11,V12,V13,V14,... 0.875 0.6897
5: V11,V12,V14,V15,V16,V19,... 0.900 0.5517

We see different tradeoffs of sensitivity and specificity but no feature subset is dominated
by another, i.e. has worse sensitivity and specificity than any other subset.

6.2.6 Nested Resampling
As in tuning, the performance estimate of the finally selected feature subset is usually opti-
mistically biased. To obtain unbiased performance estimates, nested resampling is required
and can be set up analogously to HPO (see Section 4.3). We now show this as an example on
the sonar task. The AutoFSelector class wraps a learner and augments it with automatic
feature selection. Because the AutoFSelector itself inherits from the Learner base class,
it can be used like any other learner. In the example below, a logistic regression learner is
created. This learner is then wrapped in a random search feature selector that uses holdout
(inner) resampling for performance evaluation. The sugar function auto_fselector

auto_fselector
can be

used to create an instance of AutoFSelector:

afs = auto_fselector(
fselector = fs("random_search"),
learner = lrn("classif.log_reg"),
resampling = rsmp("holdout"),
measure = msr("classif.acc"),
terminator = trm("evals", n_evals = 10)

)
afs

https://mlr3fselect.mlr-org.com/reference/fsi.html
https://mlr3fselect.mlr-org.com/reference/FSelectorBatch.html
https://mlr3fselect.mlr-org.com/reference/AutoFSelector.html
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3fselect.mlr-org.com/reference/auto_fselector.html
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<AutoFSelector:classif.log_reg.fselector>
* Model: list
* Packages: mlr3, mlr3fselect, mlr3learners, stats
* Predict Type: response
* Feature Types: logical, integer, numeric, character, factor,
ordered

* Properties: twoclass, weights

The AutoFSelector can then be passed to benchmark() or resample() for nested resam-
pling (Section 4.3). Below we compare our wrapped learner afs with a normal logistic
regression lrn("classif.log_reg").

grid = benchmark_grid(tsk("sonar"), list(afs, lrn("classif.log_reg")),
rsmp("cv", folds = 3))

bmr = benchmark(grid)$aggregate(msr("classif.acc"))
as.data.table(bmr)[, .(learner_id, classif.acc)]

learner_id classif.acc
1: classif.log_reg.fselector 0.702
2: classif.log_reg 0.707

We can see that, in this example, the feature selection improves prediction performance.

6.3 Conclusion
In this chapter, we learned how to perform feature selection with mlr3. We introduced
filter and wrapper methods and covered the optimization of multiple performance measures.
Once you have learned about pipelines we will return to feature selection in Section 8.4.5.

If you are interested in learning more about feature selection then we recommend an
overview of methods in Chandrashekar and Sahin (2014); a more formal and detailed intro-
duction to filters and wrappers is in Guyon and Elisseeff (2003), and a benchmark of filter
methods was performed by Bommert et al. (2020).

Table 6.1: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor/Function Fields/Methods
Filter flt() $calculate()
FSelectInstanceBatchSingleCrit or
FSelectInstanceBatchMultiCrit

fsi() / fselect() -

FSelectorBatch fs() $optimize()
AutoFSelector auto_fselector() $train();

$predict()

https://www.rdocumentation.org/packages/base/topics/funprog
https://mlr3filters.mlr-org.com/reference/flt.html
https://mlr3fselect.mlr-org.com/reference/FSelectInstanceBatchSingleCrit.html
https://mlr3fselect.mlr-org.com/reference/FSelectInstanceBatchMultiCrit.html
https://mlr3fselect.mlr-org.com/reference/fsi.html
https://mlr3fselect.mlr-org.com/reference/fselect.html
https://mlr3fselect.mlr-org.com/reference/FSelectorBatch.html
https://mlr3fselect.mlr-org.com/reference/fs.html
https://mlr3fselect.mlr-org.com/reference/AutoFSelector.html
https://mlr3fselect.mlr-org.com/reference/auto_fselector.html
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6.4 Exercises
1. Compute the correlation filter scores on tsk("mtcars") and use the filter to

select the five features most strongly correlated with the target. Resample
lrn("regr.kknn") on both the full dataset and the reduced one, and compare
both performances based on 10-fold CV with respect to MSE. NB: Here, we have
performed the feature filtering outside of CV, which is generally not a good idea
as it biases the CV performance estimation. To do this properly, filtering should
be embedded inside the CV via pipelines – try to come back to this exercise after
you read Chapter 8 to implement this with less bias.

2. Apply backward selection to tsk("penguins") with lrn("classif.rpart") and
holdout resampling by the classification accuracy measure. Compare the results
with those in Section 6.2.1 by also running the forward selection from that section.
Do the selected features differ? Which feature selection method reports a higher
classification accuracy in its $result?

3. There is a problem in the performance comparison in Exercise 2 as feature selec-
tion is performed on the test-set. Change the process by applying forward feature
selection with auto_fselector(). Compare the performance to backward feature
selection from Exercise 2 using nested resampling.

4. (*) Write a feature selection algorithm that is a hybrid of a filter and a wrapper
method. This search algorithm should compute filter scores for all features and
then perform a forward search. But instead of tentatively adding all remaining
features to the current feature set, it should only stochastically try a subset of the
available features. Features with high filter scores should be added with higher
probability. Start by coding a stand-alone R method for this search (based on a
learner, task, resampling, performance measure and some control settings). Then,
as a stretch goal, see if you can implement this as an R6 class inheriting from
FSelectorBatch.
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mlr3 aims to provide a layer of abstraction for ML practitioners, allowing users to quickly
swap one algorithm for another without needing expert knowledge of the underlying imple-
mentation. A unified interface for Task, Learner, and Measure objects means that complex
benchmark and tuning experiments can be run in just a few lines of code for any off-the-shelf
model, i.e., if you just want to run an experiment using the basic implementation from the
underlying algorithm, we hope we have made this easy for you to do.

mlr3pipelines (Binder et al. 2021) takes this modularity one step further, extending it to
workflows that may also include data preprocessing (Chapter 9), building ensemble-models,
or even more complicated meta-models. mlr3pipelinesmakes it possible to build individual
steps within a Learner out of building blocks, which inherit from the PipeOp class. PipeOps
can be connected using directed edges to form a Graph or ‘pipeline’, which represent the
flow of data between operations. During model training, the PipeOps in a Graph transform
a given Task and subsequent PipeOps receive the transformed Task as input. As well as
transforming data, PipeOps generate a state, which is used to inform the PipeOps operation
during prediction, similar to how learners learn and store model parameters/weights during
training that go on to inform model prediction. This is visualized in Figure 7.1 using the
“Scaling” PipeOp, which scales features during training and saves the scaling factors as a
state to be used in predictions.

We refer to pipelines as either sequential or non-sequential. These terms should not be
confused with “sequential” and “parallel” processing. In the context of pipelines, “sequential”
refers to the movement of data through the pipeline from one PipeOp directly to the next
from start to finish. Sequential pipelines can be visualized in a straight line – as we will see in
this chapter. In contrast, non-sequential pipelines see data being processed through PipeOps
that may have multiple inputs and/or outputs. Non-sequential pipelines are characterized
by multiple branches so data may be processed by different PipeOps at different times.
Visually, non-sequential pipelines will not be a straight line from start to finish, but a more
complex graph. In this chapter, we will look at sequential pipelines and in the next we will
focus on non-sequential pipelines.
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https://mlr3.mlr-org.com
https://mlr3.mlr-org.com/reference/Task.html
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/Measure.html
https://mlr3pipelines.mlr-org.com
https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
https://mlr3pipelines.mlr-org.com/reference/Graph.html
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Figure 7.1: The $train()method of the “Scaling” PipeOp both transforms data (rectangles)
as well as creates a state, which is the scaling factors necessary to transform data during
prediction.

7.1 PipeOp: Pipeline Operators
The basic class of mlr3pipelines is the PipeOpPipeOp , short for “pipeline operator”. It represents
a transformative operation on an input (for example, a training Task), resulting in some
output. Similarly to a learner, it includes a $train() and a $predict() method. The train-
ing phase typically generates a particular model of the data, which is saved as the internal
stateState . In the prediction phase, the PipeOp acts on the prediction Task using information
from the saved state. Therefore, just like a learner, a PipeOp has “parameters” (i.e., the
state) that are trained. As well as ‘parameters’, PipeOps also have hyperparameters that can
be set by the user when constructing the PipeOp or by accessing its $param_set. As with
other classes, PipeOps can be constructed with a sugar function, po()po() , or pos() for multiple
PipeOps, and all available PipeOps are made available in the dictionary mlr_pipeopsmlr_pipeops . An
up-to-date list of PipeOps contained in mlr3pipelines with links to their documentation
can be found at https://mlr-org.com/pipeops.html, a small subset of these are printed be-
low. If you want to extend mlr3pipelines with a PipeOp that has not been implemented,
have a look at our vignette on extending PipeOps by running: vignette("extending",
package = "mlr3pipelines").

as.data.table(po())[1:6, 1:2]

key label
1: adas ADAS Balancing
2: blsmote BLSMOTE Balancing
3: boxcox Box-Cox Transformation of Numeric Features
4: branch Path Branching

https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
https://mlr3.mlr-org.com/reference/Task.html
https://mlr3pipelines.mlr-org.com/reference/po.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops.html
https://mlr-org.com/pipeops.html
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5: chunk Chunk Input into Multiple Outputs
6: classbalancing Class Balancing

Let us now take a look at a PipeOp in practice using principal component analysis (PCA)
as an example, which is implemented in PipeOpPCA. Below we construct the PipeOp using
its ID "pca" and inspect it.

library(mlr3pipelines)

po_pca = po("pca", center = TRUE)
po_pca

PipeOp: <pca> (not trained)
values: <center=TRUE>
Input channels <name [train type, predict type]>:
input [Task,Task]

Output channels <name [train type, predict type]>:
output [Task,Task]

On printing, we can see that the PipeOp has not been trained and that we have changed
some of the hyperparameters from their default values. The Input channels and Output
channels lines provide information about the input and output types of this PipeOp. The
PCA PipeOp takes one input (named “input”) of type “Task”, both during training and
prediction (“input [Task,Task]”), and produces one called “output” that is also of type
“Task” in both phases (“output [Task,Task]”). This highlights a key difference from the
Learner class: PipeOps can return results after the training phase.

A PipeOp can be trained using $train(), which can have multiple inputs and outputs.
Both inputs and outputs are passed as elements in a single list. The "pca" PipeOp takes
as input the original task and after training returns the task with features replaced by their
principal components.

tsk_small = tsk("penguins_simple")$select(c("bill_depth", "bill_length"))
poin = list(tsk_small$clone()$filter(1:5))
poout = po_pca$train(poin) # poin: Task in a list
poout # list with a single element 'output'

$output
<TaskClassif:penguins> (5 x 3): Simplified Palmer Penguins
* Target: species
* Properties: multiclass
* Features (2):
- dbl (2): PC1, PC2

poout[[1]]$head()

species PC1 PC2
1: Adelie 0.1561 0.005716
2: Adelie 1.2677 0.789534
3: Adelie 1.5336 -0.174460
4: Adelie -2.1096 0.998977
5: Adelie -0.8478 -1.619768

https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_pca.html
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During training, PCA transforms incoming data by rotating it in such a way that features
become uncorrelated and are ordered by their contribution to the total variance. The rota-
tion matrix is also saved in the internal $state field during training (shown in Figure 7.1),
which is then used during predictions and applied to new data.

po_pca$state

Standard deviations (1, .., p=2):
[1] 1.513 1.034

Rotation (n x k) = (2 x 2):
PC1 PC2

bill_depth -0.6116 -0.7911
bill_length 0.7911 -0.6116

Once trained, the $predict() function can then access the saved state to operate on the
test data, which again is passed as a list:

tsk_onepenguin = tsk_small$clone()$filter(42)
poin = list(tsk_onepenguin)
poout = po_pca$predict(poin)
poout[[1]]$data()

species PC1 PC2
1: Adelie 1.555 -1.455

7.2 Graph: Networks of PipeOps
PipeOps represent individual computational steps in machine learning pipelines. These
pipelines themselves are defined by Graph objects. A Graph is a collection of PipeOps with
“edges” that guide the flow of data.

The most convenient way of building a Graph is to connect a sequence of PipeOps using
the %>>%-operator%>>% (read “double-arrow”) operator. When given two PipeOps, this operator
creates a Graph that first executes the left-hand PipeOp, followed by the right-hand one. It
can also be used to connect a Graph with a PipeOp, or with another Graph. The following
example uses po("mutate") to add a new feature to the task, and po("scale") to then
scale and center all numeric features.

po_mutate = po("mutate",
mutation = list(bill_ratio = ~bill_length / bill_depth)

)
po_scale = po("scale")
graph = po_mutate %>>% po_scale
graph

Graph with 2 PipeOps:
ID State sccssors prdcssors

https://mlr3pipelines.mlr-org.com/reference/Graph.html
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mutate <<UNTRAINED>> scale
scale <<UNTRAINED>> mutate

The output provides information about the layout of the Graph. For each PipOp (ID), we can
see information about the state (State), as well as a list of its successors (sccssors), which
are PipeOps that come directly after the given PipeOp, and its predecessors (prdcssors), the
PipeOps that are connected to its input. In this simple Graph, the output of the "mutate"
PipeOp is passed directly to the "scale" PipeOp and neither takes any other inputs or
outputs from other PipeOps. The $plot() $plot()method can be used to visualize the graph.

graph$plot(horizontal = TRUE)

Figure 7.2: Simple sequential pipeline plot.

The plot demonstrates how a Graph is simply a collection of PipeOps that are connected
by ‘edges’. The collection of PipeOps inside a Graph can be accessed through the $pipeops
field. The $edges field can be used to access edges, which returns a data.table listing the
“source” (src_id, src_channel) and “destination” (dst_id, dst_channel) of data flowing
along each edge

$edges/$pipeops
.

graph$pipeops

$mutate
PipeOp: <mutate> (not trained)
values: <mutation=<list>, delete_originals=FALSE>
Input channels <name [train type, predict type]>:
input [Task,Task]

Output channels <name [train type, predict type]>:
output [Task,Task]

$scale
PipeOp: <scale> (not trained)
values: <robust=FALSE>
Input channels <name [train type, predict type]>:
input [Task,Task]

Output channels <name [train type, predict type]>:
output [Task,Task]

graph$edges

src_id src_channel dst_id dst_channel
1: mutate output scale input

Instead of using %>>%, you can also create a Graph explicitly using the $add_pipeop() and
$add_edge() methods to create PipeOps and the edges connecting them:



162 Sequential Pipelines

graph = Graph$new()$
add_pipeop(po_mutate)$
add_pipeop(po_scale)$
add_edge("mutate", "scale")

Graphs and DAGs

The Graph class represents an object similar to a directed acyclic graph (DAG), since
the input of a PipeOp cannot depend on its output and hence cycles are not allowed.
However, the resemblance to a DAG is not perfect, since the Graph class allows for
multiple edges between nodes. A term such as “directed acyclic multigraph” would be
more accurate, but we use “graph” for simplicity.

Once built, a Graph can be used by calling $train() and $predict() as if it were a Learner
(though it still outputs a list during training and prediction):

result = graph$train(tsk_small)
result

$scale.output
<TaskClassif:penguins> (333 x 4): Simplified Palmer Penguins
* Target: species
* Properties: multiclass
* Features (3):
- dbl (3): bill_depth, bill_length, bill_ratio

result[[1]]$data()[1:3]

species bill_depth bill_length bill_ratio
1: Adelie 0.7796 -0.8947 -1.0421
2: Adelie 0.1194 -0.8216 -0.6804
3: Adelie 0.4241 -0.6753 -0.7435

result = graph$predict(tsk_onepenguin)
result[[1]]$head()

species bill_depth bill_length bill_ratio
1: Adelie 0.9319 -0.529 -0.8963

7.3 Sequential Learner-Pipelines
Possibly the most common application for mlr3pipelines is to use it to perform prepro-
cessing tasks, such as missing value imputation or factor encoding, and to then feed the
resulting data into a Learner – we will see more of this in practice in Chapter 9. A Graph
representing this workflow manipulates data and fits a Learner-model during training, en-
suring that the data is processed the same way during the prediction stage. Conceptually,

https://mlr3pipelines.mlr-org.com/reference/Graph.html
https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
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the process may look as shown in Figure 7.3.

Figure 7.3: Conceptualization of training and prediction process inside a sequential learner-
pipeline. During training (top row), the data is passed along the preprocessing operators,
each of which modifies the data and creates a $state. Finally, the learner receives the
data and a model is created. During prediction (bottom row), data is likewise transformed
by preprocessing operators, using their respective $state (gray boxes) information in the
process. The learner then receives data that has the same format as the data seen during
training, and makes a prediction.

7.3.1 Learners as PipeOps and Graphs as Learners
In Figure 7.3 the final PipeOp is a Learner. Learner objects can be converted to PipeOps
with as_pipeop(), however, this is only necessary if you choose to manually create a
graph instead of using %>>%. With either method, internally Learners are passed to
po("learner"). The following code creates a Graph that uses po("imputesample") to
impute missing values by sampling from observed values (Section 9.3) then fits a logistic
regression on the transformed task.

lrn_logreg = lrn("classif.log_reg")
graph = po("imputesample") %>>% lrn_logreg
graph$plot(horizontal = TRUE)

Figure 7.4: "imputesample" and "learner" PipeOps in a sequential pipeline.

We have seen how training and predicting Graphs is possible but has a slightly different
design to Learner objects, i.e., inputs and outputs during both training and predicting are
list objects. To use a Graph as a Learner with an identical interface, it can be wrapped
in a GraphLearner object with as_learner()

GraphLearner
. The Graph can then be used like any other

Learner, so now we can benchmark our pipeline to decide if we should impute by sampling
or with the mode of observed values (po("imputemode")):

https://mlr3pipelines.mlr-org.com/reference/as_pipeop.html
https://mlr3pipelines.mlr-org.com/reference/Graph.html
https://mlr3pipelines.mlr-org.com/reference/mlr_learners_graph.html
https://mlr3.mlr-org.com/reference/as_learner.html
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glrn_sample = as_learner(graph)
glrn_mode = as_learner(po("imputemode") %>>% lrn_logreg)

design = benchmark_grid(tsk("pima"), list(glrn_sample, glrn_mode),
rsmp("cv", folds = 3))

bmr = benchmark(design)
aggr = bmr$aggregate()[, .(learner_id, classif.ce)]
aggr

learner_id classif.ce
1: imputesample.classif.log_reg 0.2357
2: imputemode.classif.log_reg 0.2396

In this example, we can see that the sampling imputation method worked slightly better,
although the difference is likely not significant.

Automatic Conversion to Learner

In this book, we always use as_learner() to convert a Graph to a Learner explic-
itly for clarity. While this conversion is necessary when you want to use Learner-
specific functions like $predict_newdata(), builtin mlr3 methods like resample()
and benchmark_grid() will make this conversion automatically and it is therefore
not strictly needed. In the above example, it is therefore also possible to use

design = benchmark_grid(tsk("pima"),
list(graph, po("imputesample") %>>% lrn_logreg),
rsmp("cv", folds = 3))

7.3.2 Inspecting Graphs
You may want to inspect pipelines and the flow of data to learn more about your pipeline or
to debug them. We first need to set the $keep_results flag to be TRUE so that intermediate
results are retained, which is turned off by default to save memory.

glrn_sample$graph_model$keep_results = TRUE
glrn_sample$train(tsk("pima"))

The Graph can be accessed through the $graph_model field and then PipeOps can be ac-
cessed with $pipeops as before. In this example, we can see that our Task no longer has
missing data after training the "imputesample" PipeOp. This can be used to access arbi-
trary intermediate results:

imputesample_output = glrn_sample$graph_model$pipeops$imputesample$
.result

imputesample_output[[1]]$missings()

diabetes age pedigree pregnant glucose insulin mass pressure
0 0 0 0 0 0 0 0

triceps

https://mlr3.mlr-org.com/reference/Task.html
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0

We could also use $pipeops to access our underlying Learner, note we need to use
$learner_model to get the learner from the PipeOpLearner. We could use a similar method
to peek at the state of any PipeOp in the graph:

pipeop_logreg = glrn_sample$graph_model$pipeops$classif.log_reg
learner_logreg = pipeop_logreg$learner_model
learner_logreg

<LearnerClassifLogReg:classif.log_reg>: Logistic Regression
* Model: glm
* Parameters: list()
* Packages: mlr3, mlr3learners, stats
* Predict Types: [response], prob
* Feature Types: logical, integer, numeric, character, factor,
ordered

* Properties: twoclass, weights

$base_learner()

In this example we could have used glrn_sample$base_learner() to immediately
access our trained learner, however, this does not generalize to more complex pipelines
that may contain multiple learners.

7.3.3 Configuring Pipeline Hyperparameters
PipeOp hyperparameters are collected together in the $param_set of a graph and prefixed
with the ID of the PipeOp to avoid parameter name clashes. Below we use the same PipeOp
twice but set the id to ensure their IDs are unique.

graph = po("scale", center = FALSE, scale = TRUE, id = "scale") %>>%
po("scale", center = TRUE, scale = FALSE, id = "center") %>>%
lrn("classif.rpart", cp = 1)

unlist(graph$param_set$values)

scale.center scale.scale scale.robust
0 1 0

center.center center.scale center.robust
1 0 0

classif.rpart.cp classif.rpart.xval
1 0

PipeOp IDs in Graphs

If you need to change the ID of a PipeOp in a Graph then use the
$set_names method from the Graph class, e.g., some_graph$set_names(old =
"old_name", new = "new_name"). Do not change the ID of a PipeOp through
graph$pipeops$<old_id>$id = <new_id>, as this will only alter the PipeOp’s record

https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_learner.html
https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
https://mlr3pipelines.mlr-org.com/reference/Graph.html
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of its own ID, and not the Graph’s record, which will lead to errors.

Whether a pipeline is treated as a Graph or GraphLearner, hyperparameters are updated
and accessed in the same way.

graph$param_set$values$classif.rpart.maxdepth = 5
graph_learner = as_learner(graph)
graph_learner$param_set$values$classif.rpart.minsplit = 2
unlist(graph_learner$param_set$values)

scale.center scale.scale scale.robust
0 1 0

center.center center.scale center.robust
1 0 0

classif.rpart.cp classif.rpart.maxdepth classif.rpart.minsplit
1 5 2

classif.rpart.xval
0

7.4 Conclusion
In this chapter, we introduced mlr3pipelines and its building blocks: Graph and PipeOp.
We saw how to create pipelines as Graph objects from multiple PipeOp objects and how to
access PipeOps from a Graph. We also saw how to treat a Learner as a PipeOp and how to
treat a Graph as a Learner. In Chapter 8 we will take this functionality a step further and
look at pipelines where PipeOps are not executed sequentially, as well as looking at how
you can use mlr3tuning to tune pipelines. A lot of practical examples that use sequential
pipelines can be found in Chapter 9 where we look at pipelines for data preprocessing.

Table 7.1: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor/Function Fields/Methods
PipeOp po() $train(); $predict();

$state; $id; $param_set
Graph %>>% $add_pipeop();

$add_edge(); $pipeops;
$edges;$train();
$predict()

GraphLearner as_learner $graph
PipeOpLearner as_pipeop $learner_model

https://mlr3pipelines.mlr-org.com
https://mlr3pipelines.mlr-org.com/reference/Graph.html
https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
https://mlr3tuning.mlr-org.com
https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
https://mlr3pipelines.mlr-org.com/reference/po.html
https://mlr3pipelines.mlr-org.com/reference/Graph.html
https://mlr3pipelines.mlr-org.com/reference/mlr_learners_graph.html
https://mlr3.mlr-org.com/reference/as_learner.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_learner.html
https://mlr3pipelines.mlr-org.com/reference/as_pipeop.html
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7.5 Exercises
1. Create a learner containing a Graph that first imputes missing values using

po("imputeoor"), standardizes the data using po("scale"), and then fits a lo-
gistic linear model using lrn("classif.log_reg").

2. Train the learner created in the previous exercise on tsk("pima") and display
the coefficients of the resulting model. What are two different ways to access the
model?

3. Verify that the "age" column of the input task of lrn("classif.log_reg")
from the previous exercise is indeed standardized. One way to do this would be
to look at the $data field of the lrn("classif.log_reg") model; however, that
is specific to that particular learner and does not work in general. What would
be a different, more general way to do this? Hint: use the $keep_results flag.
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In Chapter 7 we looked at simple sequential pipelines that can be built using the Graph class
and a few PipeOp objects. In this chapter, we will take this further and look at non-sequential
pipelines that can perform more complex operations. We will then look at tuning pipelines
by combining methods in mlr3tuning and mlr3pipelines and will consider some concrete
examples using multi-fidelity tuning (Section 5.3) and feature selection (Chapter 6).

We saw the power of the %>>%-operator in Chapter 7 to assemble graphs from combinations
of multiple PipeOps and Learners. Given a single PipeOp or Learner, the %>>%-operator
will arrange these objects into a linear Graph with each PipeOp acting in sequence. However,
by using the gunion() function, we can instead combine multiple PipeOps, Graphs, or a
mixture of both, into a parallel Graph.

In the following example, we create a Graph that centers its inputs (po("scale")) and then
copies the centered data to two parallel streams: one replaces the data with columns that
indicate whether data is missing (po("missind")), and the other imputes missing data using
the median (po("imputemedian")), which we will return to in Section 9.3. The outputs of
both streams are then combined into a single dataset using po("featureunion").

library(mlr3pipelines)

graph = po("scale", center = TRUE, scale = FALSE) %>>%
gunion(list(

po("missind"),
po("imputemedian")

)) %>>%
po("featureunion")

graph$plot(horizontal = TRUE)
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https://mlr3pipelines.mlr-org.com/reference/gunion.html
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Figure 8.1: Simple parallel pipeline plot showing a common data source being scaled then
the same data being passed to two PipeOps in parallel whose outputs are combined and
returned to the user.

When applied to the first three rows of the "pima" task we can see how this imputes missing
data and adds a column indicating where values were missing.

tsk_pima_head = tsk("pima")$filter(1:3)
tsk_pima_head$data(cols = c("diabetes", "insulin", "triceps"))

diabetes insulin triceps
1: pos NA 35
2: neg NA 29
3: pos NA NA

result = graph$train(tsk_pima_head)[[1]]
result$data(cols = c("diabetes", "insulin", "missing_insulin", "triceps",
"missing_triceps"))

diabetes insulin missing_insulin triceps missing_triceps
1: pos 0 missing 3 present
2: neg 0 missing -3 present
3: pos 0 missing 0 missing

8.1 Selectors and Parallel Pipelines
It is common in Graphs for an operation to be applied to a subset of features. In
mlr3pipelines this can be achieved in two ways (Figure 8.2): either by passing the column
subset to the affect_columns hyperparameter of a PipeOp (assuming it has that hyperpa-
rameter), which controls which columns should be affected by the PipeOp; or, one can use
the PipeOpSelect operator to create operations in parallel on specified feature subsets, and
then unite the result using PipeOpFeatureUnion.

Both methods make use of SelectorSelector -functions. These are helper functions that indi-
cate to a PipeOp which features it should apply to. Selectors may match column
names by regular expressions (selector_grep()), or by column type (selector_type()).
Selectors can also be used to join variables (selector_union()), return their set differ-
ence (selector_setdiff()), or select the complement of features from another Selector
(selector_invert()).

For example, in Section 7.1 we applied PCA to the bill length and depth of pen-
guins from tsk("penguins_simple") by first selecting these columns using the Task
method $select() and then applying the PipeOp. We can now do this more simply with

https://mlr3pipelines.mlr-org.com/reference/Graph.html
https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_select.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_featureunion.html
https://mlr3pipelines.mlr-org.com/reference/Selector.html
https://mlr3pipelines.mlr-org.com/reference/Selector.html
https://mlr3pipelines.mlr-org.com/reference/Selector.html
https://mlr3pipelines.mlr-org.com/reference/Selector.html
https://mlr3pipelines.mlr-org.com/reference/Selector.html
https://mlr3pipelines.mlr-org.com/reference/Selector.html
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(a) The affect_columns hyperparameter can be used to restrict operations to a subset of features.
When used, pipelines may still be run in sequence.

(b) Operating on subsets of tasks using concurrent paths by first splitting the inputs with
po("select") and then combining outputs with po("featureunion").

Figure 8.2: Two methods of setting up PipeOps (po(op1) and po(op2)) that operate on
complementary features (X and ¬X) of an input task.

selector_grep, and could go on to use selector_invert to apply some other PipeOp to
other features, below we use po("scale") and make use of the affect_columns hyperpa-
rameter:

sel_bill = selector_grep("^bill")
sel_not_bill = selector_invert(sel_bill)

graph = po("scale", affect_columns = sel_not_bill) %>>%
po("pca", affect_columns = sel_bill)

result = graph$train(tsk("penguins_simple"))
result[[1]]$data()[1:3, 1:5]

species PC1 PC2 body_mass flipper_length
1: Adelie -5.015 1.0717 -0.5676 -1.4246
2: Adelie -4.495 -0.1853 -0.5055 -1.0679
3: Adelie -3.755 0.4868 -1.1886 -0.4257

The biggest advantage of this method is that it creates a very simple, sequential Graph.
However, one disadvantage of the affect_columns method is that it is relatively easy to
have unexpected results if the ordering of PipeOps is mixed up. For example, if we had
reversed the order of po("pca") and po("scale") above then we would have first created
columns "PC1" and "PC2" and then erroneously scaled these, since their names do not start
with “bill” and they are therefore matched by sel_not_bill. Creating parallel paths with
po("select") can help mitigate such errors by selecting features given by the Selector
and creating independent data processing streams with the given feature subset. Below we
pass the parallel pipelines to gunion() as a list to ensure they receive the same input,
and then combine the outputs with po("featureunion").

po_select_bill = po("select", id = "s_bill", selector = sel_bill)
po_select_not_bill = po("select", id = "s_notbill",

https://mlr3pipelines.mlr-org.com/reference/gunion.html
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selector = sel_not_bill)

path_pca = po_select_bill %>>% po("pca")
path_scale = po_select_not_bill %>>% po("scale")

graph = gunion(list(path_pca, path_scale)) %>>% po("featureunion")
graph$plot(horizontal = TRUE)

Figure 8.3: Visualization of a Graph where features are split into two paths, one with PCA
and one with scaling, then combined and returned.

The po("select") method also has the significant advantage that it allows the same set of
features to be used in multiple operations simultaneously, or to both transform features and
keep their untransformed versions (by using po("nop") in one path). PipeOpNOP performs
no operation on its inputs and is thus useful when you only want to perform a transformation
on a subset of features and leave the others untouched:

graph = gunion(list(
po_select_bill %>>% po("scale"),
po_select_not_bill %>>% po("nop")

)) %>>% po("featureunion")
graph$plot(horizontal = TRUE)

Figure 8.4: Visualization of our Graph where features are split into two paths, features that
start with ‘bill’ are scaled and the rest are untransformed.

graph$train(tsk("penguins_simple"))[[1]]$data()[1:3, 1:5]

species bill_depth bill_length body_mass flipper_length
1: Adelie 0.7796 -0.8947 3750 181
2: Adelie 0.1194 -0.8216 3800 186
3: Adelie 0.4241 -0.6753 3250 195

https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_nop.html
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8.2 Common Patterns and ppl()
Now you have the tools to create sequential and non-sequential pipelines, you can create
an infinite number of transformations on Task, Learner, and Prediction objects. In Sec-
tion 8.3.1 and Section 8.3.2 we will work through two examples to demonstrate how you can
make complex and powerful graphs using the methods and classes we have already looked at.
However, many common problems in ML can be well solved by the same pipelines, and so
to make your life easier we have implemented and saved these pipelines in the mlr_graphs
dictionary; pipelines in the dictionary can be accessed with the ppl() ppl()sugar function.

At the time of writing, this dictionary includes seven Graphs (required arguments included
below):

• ppl("bagging", graph): In mlr3pipelines, bagging is the process of running a graph
multiple times on different data samples and then averaging the results. This is discussed
in detail in Section 8.3.1.

• ppl("branch", graphs): Uses PipeOpBranch to create different path branches from the
given graphs where only one branch is evaluated. This is returned to in more detail in
Section 8.4.2.

• ppl("greplicate", graph, n): Create a Graph that replicates graph (which can also
be a single PipeOp) n times. The pipeline avoids ID clashes by adding a suffix to each
PipeOp, we will see this pipeline in use in Section 8.3.1.

• ppl("ovr", graph): One-versus-rest classification for converting multiclass classification
tasks into several binary classification tasks with one task for each class in the original.
These tasks are then evaluated by the given graph, which should be a learner (or a pipeline
containing a learner that emits a prediction). The predictions made on the binary tasks
are combined into the multiclass prediction needed for the original task.

• ppl("robustify"): Performs common preprocessing steps to make any Task compatible
with a given Learner. This pipeline is demonstrated in Section 9.4.

• ppl("stacking", base_learners, super_learner): Stacking, returned to in detail in
Section 8.3.2, is the process of using predictions from one or more models (base_learners)
as features in a subsequent model (super_learner)

• ppl("targettrafo", graph): Create a Graph that transforms the prediction target of
a task and ensures that any transformations applied during training (using the function
passed to the targetmutate.trafo hyperparameter) are inverted in the resulting pre-
dictions (using the function passed to the targetmutate.inverter hyperparameter); an
example is given in Section 9.5.

8.3 Practical Pipelines by Example
In this section, we will put pipelines into practice by demonstrating how to turn weak
learners into powerful machine learning models using bagging and stacking.

8.3.1 Bagging with “greplicate” and “subsample”
The basic idea of bagging (from bootstrapp aggregating), introduced by Breiman (1996), is
to aggregate multiple predictors into a single, more powerful predictor (Figure 8.5). Predic-

https://mlr3.mlr-org.com/reference/Task.html
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/Prediction.html
https://mlr3pipelines.mlr-org.com/reference/mlr_graphs.html
https://mlr3pipelines.mlr-org.com/reference/ppl.html
https://mlr3pipelines.mlr-org.com/reference/Graph.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_branch.html
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tions are usually aggregated by the arithmetic mean for regression tasks or majority vote for
classification. The underlying intuition behind bagging is that averaging a set of unstable
and diverse (i.e., only weakly correlated) predictors can reduce the variance of the overall
prediction. Each learner is trained on a different random sample of the original data.

Although we have already seen that a pre-constructed bagging pipeline is available with
ppl("bagging"), in this section we will build our own pipeline from scratch to showcase
how to construct a complex Graph, which will look something like Figure 8.5.

Figure 8.5: Graph that performs Bagging by independently subsampling data and fitting
individual decision tree learners. The resulting predictions are aggregated by a majority
vote PipeOp.

To begin, we use po("subsample") to sample a fraction of the data (here 70%), which
is then passed to a classification tree (note by default po("subsample") samples without
replacement).

gr_single_pred = po("subsample", frac = 0.7) %>>% lrn("classif.rpart")

Next, we use ppl("greplicate") to copy the graph, gr_single_pred, 10 times (n = 10)
and finally po("classifavg") to take the majority vote of all predictions, note that we
pass innum = 10 to "classifavg" to tell the PipeOp to expect 10 inputs.

gr_pred_set = ppl("greplicate", graph = gr_single_pred, n = 10)
gr_bagging = gr_pred_set %>>% po("classifavg", innum = 10)
gr_bagging$plot()

Figure 8.6: Constructed bagging Graph with one input being sampled many times for 10
different learners.

https://mlr3pipelines.mlr-org.com/reference/Graph.html
https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
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Now let us see how well our bagging pipeline compares to the single decision tree and a
random forest when benchmarked against tsk("sonar").

# turn graph into learner
glrn_bagging = as_learner(gr_bagging)
glrn_bagging$id = "bagging"

lrn_rpart = lrn("classif.rpart")
learners = c(glrn_bagging, lrn_rpart, lrn("classif.ranger"))

bmr = benchmark(benchmark_grid(tsk("sonar"), learners,
rsmp("cv", folds = 3)))

bmr$aggregate()[, .(learner_id, classif.ce)]

learner_id classif.ce
1: bagging 0.2498
2: classif.rpart 0.2739
3: classif.ranger 0.1973

The bagged learner performs better than the decision tree but worse than the random forest.
To automatically recreate this pipeline, you can construct ppl("bagging") by specifying
the learner to ‘bag’, the number of iterations, the fraction of data to sample, and the PipeOp
to average the predictions, as shown in the code below. Note we set collect_multiplicity
= TRUE which collects the predictions across paths, that technically use the Multiplicity
method, which we will not discuss here but refer the reader to the documentation.

ppl("bagging", lrn("classif.rpart"),
iterations = 10, frac = 0.7,
averager = po("classifavg", collect_multiplicity = TRUE))

The main difference between our pipeline and a random forest is that the latter also performs
feature subsampling, where only a random subset of available features is considered at each
split point. While we cannot implement this directly with mlr3pipelines, we can use a
custom Selector method to approximate this method. We will create this Selector by
passing a function that takes as input the task and returns a sample of the features, we
sample the square root of the number of features to mimic the implementation in ranger.
For efficiency, we will now use ppl("bagging") to recreate the steps above:

# custom selector
selector_subsample = function(task) {
sample(task$feature_names, sqrt(length(task$feature_names)))

}

# bagging pipeline with our selector
gr_bagging_quasi_rf = ppl("bagging",
graph = po("select", selector = selector_subsample) %>>%

lrn("classif.rpart", minsplit = 1),
iterations = 100,
averager = po("classifavg", collect_multiplicity = TRUE)

)

https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
https://mlr3pipelines.mlr-org.com/reference/Multiplicity.html
https://mlr3pipelines.mlr-org.com/reference/Selector.html
https://www.rdocumentation.org/packages/ranger/topics/ranger
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# bootstrap resampling
gr_bagging_quasi_rf$param_set$values$subsample.replace = TRUE

# convert to learner
glrn_quasi_rf = as_learner(gr_bagging_quasi_rf)
glrn_quasi_rf$id = "quasi.rf"

# benchmark
design = benchmark_grid(tsks("sonar"),
c(glrn_quasi_rf, lrn("classif.ranger", num.trees = 100)),
rsmp("cv", folds = 5)

)
bmr = benchmark(design)
bmr$aggregate()[, .(learner_id, classif.ce)]

learner_id classif.ce
1: quasi.rf 0.1826
2: classif.ranger 0.1590

In only a few lines of code, we took a weaker learner and turned it into a powerful model that
we can see is comparable to the implementation in ranger::ranger. In the next section,
we will look at a second example, which makes use of cross-validation within pipelines.

8.3.2 Stacking with po(“learner_cv”)
Stacking (Wolpert 1992) is another very popular ensembling technique that can significantly
improve predictive performance. The basic idea behind stacking is to use predictions from
multiple models (usually referred to as level 0 models) as features for a subsequent model
(the level 1 model) which in turn combines these predictions (Figure 8.7). A simple combi-
nation can be a linear model (possibly regularized if you have many level 0 models), since
a weighted sum of level 0 models is often plausible and good enough. Though, non-linear
level 1 models can also be used, and it is also possible for the level 1 model to access the
input features as well as the level 0 predictions. Stacking can be built with more than two
levels (both conceptually, and in mlr3) but we limit ourselves to this simpler setup here,
which often also performs well in practice.

As with bagging, we will demonstrate how to create a stacking pipeline manually, although
a pre-constructed pipeline is available with ppl("stacking").

Stacking pipelines depend on the level 0 learners returning predictions during the $train()
phase. This is possible in mlr3pipelines with PipeOpLearnerCV. During training, this
operator performs cross-validation and passes the out-of-sample predictions to the level 1
model. Using cross-validated predictions is recommended to reduce the risk of overfitting.

We first create the level 0 learners to produce the predictions that will be used as features.
In this example, we use a classification tree, k-nearest neighbors (KNN), and a regularized
GLM. Each learner is wrapped in po("learner_cv") which performs cross-validation on
the input data and then outputs the predictions from the Learner in a new Task object.

https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_learner_cv.html
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/Task.html
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Figure 8.7: Graph that performs Stacking by fitting three models and using their outputs
as features for another model after combining with PipeOpFeatureUnion.

lrn_rpart = lrn("classif.rpart", predict_type = "prob")
po_rpart_cv = po("learner_cv", learner = lrn_rpart,
resampling.folds = 2, id = "rpart_cv"

)

lrn_knn = lrn("classif.kknn", predict_type = "prob")
po_knn_cv = po("learner_cv",
learner = lrn_knn,
resampling.folds = 2, id = "knn_cv"

)

lrn_glmnet = lrn("classif.glmnet", predict_type = "prob")
po_glmnet_cv = po("learner_cv",
learner = lrn_glmnet,
resampling.folds = 2, id = "glmnet_cv"

)

These learners are combined using gunion(), and po("featureunion") is used to merge
their predictions. This is demonstrated in the output of $train():

gr_level_0 = gunion(list(po_rpart_cv, po_knn_cv, po_glmnet_cv))
gr_combined = gr_level_0 %>>% po("featureunion")

gr_combined$train(tsk("sonar"))[[1]]$head()

Class rpart_cv.prob.M rpart_cv.prob.R knn_cv.prob.M knn_cv.prob.R
1: R 0.57895 0.4211 0.3857 0.6143
2: R 0.88636 0.1136 0.3170 0.6830
3: R 0.04348 0.9565 0.4396 0.5604
4: R 0.03030 0.9697 0.4762 0.5238
5: R 0.04348 0.9565 0.4753 0.5247
6: R 0.23077 0.7692 0.4020 0.5980

https://mlr3pipelines.mlr-org.com/reference/gunion.html
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2 variable(s) not shown: [glmnet_cv.prob.M, glmnet_cv.prob.R]

Retaining Features

In this example, the original features were removed as each PipeOp only returns the
predictions made by the respective learners. To retain the original features, include
po("nop") in the list passed to gunion().

The resulting task contains the predicted probabilities for both classes made from each of
the level 0 learners. However, as the probabilities always add up to 1, we only need the
predictions for one of the classes (as this is a binary classification task), so we can use
po("select") to only keep predictions for one class (we choose "M" in this example).

gr_stack = gr_combined %>>%
po("select", selector = selector_grep("\\.M$"))

Finally, we can combine our pipeline with the final model that will take these predictions
as its input. Below we use logistic regression, which combines the level 0 predictions in a
weighted linear sum.

gr_stack = gr_stack %>>% po("learner", lrn("classif.log_reg"))
gr_stack$plot(horizontal = TRUE)

Figure 8.8: Constructed stacking Graph with one input being passed to three weak learners
whose predictions are passed to the logistic regression.

As our final model was an interpretable logistic regression, we can inspect the weights of
the level 0 learners by looking at the final trained model:

glrn_stack = as_learner(gr_stack)
glrn_stack$train(tsk("sonar"))
glrn_stack$base_learner()$model

Call: stats::glm(formula = task$formula(), family = "binomial", data = data,
model = FALSE)

Coefficients:
(Intercept) rpart_cv.prob.M knn_cv.prob.M glmnet_cv.prob.M

-3.120 -0.134 4.040 1.804

Degrees of Freedom: 207 Total (i.e. Null); 204 Residual
Null Deviance: 287
Residual Deviance: 176 AIC: 184

https://mlr3pipelines.mlr-org.com/reference/gunion.html
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The model weights suggest that knn influences the predictions the most with the largest
coefficient. To confirm this we can benchmark the individual models alongside the stacking
pipeline.

glrn_stack$id = "stacking"
design = benchmark_grid(tsk("sonar"),
list(lrn_rpart, lrn_knn, lrn_glmnet, glrn_stack), rsmp("repeated_cv"))

bmr = benchmark(design)
bmr$aggregate()[, .(learner_id, classif.ce)]

learner_id classif.ce
1: classif.rpart 0.2876
2: classif.kknn 0.1505
3: classif.glmnet 0.2559
4: stacking 0.1438

This experiment confirms that of the individual models, the KNN learner performs the
best, however, our stacking pipeline outperforms them all. Now that we have seen the
inner workings of this pipeline, next time you might want to more efficiently create it using
ppl("stacking"), to copy the example above you would run:

ppl("stacking",
base_learners = lrns(c("classif.rpart", "classif.kknn",

"classif.glmnet")),
super_learner = lrn("classif.log_reg")

)

Having covered the building blocks of mlr3pipelines and seen these in practice, we will
now turn to more advanced functionality, combining pipelines with tuning.

8.4 Tuning Graphs
By wrapping a pipeline inside a GraphLearner, we can tune it at two levels of complexity
using mlr3tuning:

1. Tuning of a fixed, usually sequential pipeline, where preprocessing is combined
with a given learner. This simply means the joint tuning of any subset of selected
hyperparameters of operations in the pipeline. Conceptually and also technically
in mlr3, this is not much different from tuning a learner that is not part of a
pipeline.

2. Tuning not only the hyperparameters of a pipeline, whose structure is not com-
pletely fixed in terms of its included operations, but also which concrete PipeOps
should be applied to data. This allows us to select these operations (e.g. which
learner to use, which preprocessing to perform) in a data-driven manner known
as “Combined Algorithm Selection and Hyperparameter optimization” (Thorn-
ton et al. 2013). As we will soon see, we can do this in mlr3pipelines by using
the powerful branching (Section 8.4.2) and proxy (Section 8.4.3) meta operators.

https://mlr3pipelines.mlr-org.com/reference/mlr_learners_graph.html
https://mlr3tuning.mlr-org.com
https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
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Through this, we can conveniently create our own “mini AutoML systems” (Hut-
ter, Kotthoff, and Vanschoren 2019) in mlr3, which can even be geared for specific
tasks.

8.4.1 Tuning Graph Hyperparameters
Let us consider a simple, sequential pipeline using po("pca") followed by
lrn("classif.kknn"):

graph_learner = as_learner(po("pca") %>>% lrn("classif.kknn"))

The optimal setting of the rank. hyperparameter of our PCA PipeOp may realistically de-
pend on the value of the k hyperparameter of the KNN model so jointly tuning them is
reasonable. For this, we can simply use the syntax for tuning Learners, which was intro-
duced in Chapter 4.

lrn_knn = lrn("classif.kknn", k = to_tune(1, 32))
po_pca = po("pca", rank. = to_tune(2, 20))
graph_learner = as_learner(po_pca %>>% lrn_knn)
graph_learner$param_set$values

$pca.rank.
Tuning over:
range [2, 20]

$classif.kknn.k
Tuning over:
range [1, 32]

We can see how the pipeline’s $param_set includes the tune tokens for all selected hyper-
parameters, creating a joint search space. We can compare the tuned and untuned pipeline
in a benchmark experiment with nested resampling by using an AutoTuner:

glrn_tuned = auto_tuner(tnr("random_search"), graph_learner,
rsmp("holdout"), term_evals = 10)

glrn_untuned = po("pca") %>>% lrn("classif.kknn")
design = benchmark_grid(tsk("sonar"), c(glrn_tuned, glrn_untuned),
rsmp("cv", folds = 5))

benchmark(design)$aggregate()[, .(learner_id, classif.ce)]

learner_id classif.ce
1: pca.classif.kknn.tuned 0.2028
2: pca.classif.kknn 0.2458

Tuning pipelines will usually take longer than tuning individual learners as training steps
are often more complex and the search space will be larger. Therefore, parallelization is
often appropriate (Section 10.1) and/or more efficient tuning methods for searching large
tuning spaces such as Bayesian optimization (Section 5.4).

https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
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8.4.2 Tuning Alternative Paths with po(“branch”)
In the previous section, we tuned the KKNN and decision tree in the stacking pipeline, as
well as tuning the rank of the PCA. However, we tuned the PCA without first considering
if it was even beneficial at all, in this section we will answer that question by making use of
PipeOpBranch and PipeOpUnbranch, which make it possible to specify multiple alternative
paths in a pipeline. po("branch") creates multiple paths such that data can only flow
through one of these as determined by the selection hyperparameter (Figure 8.13). This
concept makes it possible to use tuning to decide which PipeOps and Learners to include
in the pipeline, while also allowing all options in every path to be tuned.

Figure 8.9: Figure demonstrates the po("branch") and po("unbranch") operators where
three separate branches are created and data only flows through the PCA, which is specified
with the argument to selection.

To demonstrate alternative paths we will make use of the MNIST (LeCun et al. 1998) data,
which is useful for demonstrating preprocessing. The data is loaded from OpenML, which
is described in Section 11.1, we subset the data to make the example run faster.

library(mlr3oml)
otsk_mnist = otsk(id = 3573)
tsk_mnist = as_task(otsk_mnist)$
filter(sample(70000, 1000))$
select(otsk_mnist$feature_names[sample(700, 100)])

po("branch") is initialized either with the number of branches or with a character-vector
indicating the names of the branches, the latter makes the selection hyperparameter
(discussed below) more readable. Below we create three branches: do nothing (po("nop")),
apply PCA (po("pca")), remove constant features (po("removeconstants")) then apply
the Yeo-Johnson transform (po("yeojohnson")). It is important to use po("unbranch")
(with the same arguments as "branch") to ensure that the outputs are merged into one
result object.

paths = c("nop", "pca", "yeojohnson")

graph = po("branch", paths, id = "brnchPO") %>>%
gunion(list(

po("nop"),
po("pca"),
po("removeconstants", id = "rm_const") %>>%
po("yeojohnson", id = "YJ")

)) %>>% po("unbranch", paths, id = "unbrnchPO")

https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_branch.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_unbranch.html
https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
https://mlr3.mlr-org.com/reference/Learner.html
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graph$plot(horizontal = TRUE)

Figure 8.10: Graph with branching to three different paths that are split with po("branch")
and combined with po("unbranch").

We can see how the output of this Graph depends on the setting of the branch.selection
hyperparameter:

# use the "PCA" path
graph$param_set$values$brnchPO.selection = "pca"
# new PCA columns
head(graph$train(tsk_mnist)[[1]]$feature_names)

[1] "PC1" "PC2" "PC3" "PC4" "PC5" "PC6"

# use the "No-Op" path
graph$param_set$values$brnchPO.selection = "nop"
# same features
head(graph$train(tsk_mnist)[[1]]$feature_names)

[1] "pixel4" "pixel8" "pixel10" "pixel11" "pixel14" "pixel39"

ppl("branch") simplifies the above by allowing you to just pass the different paths to the
graphs argument (omitting “rm_const” for simplicity here):

ppl("branch", graphs = pos(c("nop", "pca", "yeojohnson")))

Branching can even be used to tune which of several learners is most appropriate for a given
dataset. We extend our example further and add the choice between a decision tree and
KKNN:

graph_learner = graph %>>%
ppl("branch", lrns(c("classif.rpart", "classif.kknn")))

graph_learner$plot(horizontal = TRUE)

Figure 8.11: Graph with branching to three different paths that are split with po("branch")
and combined with po("unbranch") then branch and recombine again.
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Tuning the selection hyperparameters can help determine which of the possible options
work best in combination. We additionally tune the k hyperparameter of the KNN learner,
as it may depend on the type of preprocessing performed. As this hyperparameter is only
active when the "classif.kknn" path is chosen we will set a dependency (Section 4.4.4):

graph_learner = as_learner(graph_learner)

graph_learner$param_set$set_values(
brnchPO.selection = to_tune(paths),
branch.selection = to_tune(c("classif.rpart", "classif.kknn")),
classif.kknn.k = to_tune(p_int(1, 32,

depends = branch.selection == "classif.kknn"))
)

instance = tune(tnr("grid_search"), tsk_mnist, graph_learner,
rsmp("repeated_cv", folds = 3, repeats = 3), msr("classif.ce"))

instance$archive$data[order(classif.ce)[1:5],
.(brnchPO.selection, classif.kknn.k, branch.selection, classif.ce)]

brnchPO.selection classif.kknn.k branch.selection classif.ce
1: yeojohnson 15 classif.kknn 0.2473
2: yeojohnson 11 classif.kknn 0.2477
3: yeojohnson 18 classif.kknn 0.2513
4: yeojohnson 22 classif.kknn 0.2530
5: yeojohnson 8 classif.kknn 0.2537

autoplot(instance)

As we can see in the results and Figure 8.12, the KNN-learner with k set to 15 was selected,
which performs best in combination with the Yeo-Johnson transform.

8.4.3 Tuning with po(“proxy”)

This section covers advanced ML or technical details.

po("proxy") is a meta-operator that performs the operation that is stored in its content
hyperparameter, which could be another PipeOp or Graph. It can therefore be used to tune
over and select different PipeOps or Graphs that could be passed to this hyperparameter
(Figure 8.13).

To recreate the example above with po("proxy"), the first step is to create placeholder
PipeOpProxy operators to stand in for the operations (i.e., different paths) that should be
tuned.

graph_learner = po("proxy", id = "preproc") %>>%
po("proxy", id = "learner")

graph_learner = as_learner(graph_learner)

https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
https://mlr3pipelines.mlr-org.com/reference/Graph.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_proxy.html
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different hyperparameter configurations that were tested during tuning, colors separate
hyperparameter configurations.

Figure 8.13: Figure demonstrates the po("proxy") operator with a PipeOp as its argument.
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The tuning space for the content hyperparameters should be a discrete set of possibilities
to be evaluated, passed as a p_fct (Section 4.4.2). For the "preproc" proxy operator this
would simply be the different PipeOps that we want to consider:

# define content for the preprocessing proxy operator
preproc.content = p_fct(list(
nop = po("nop"),
pca = po("pca"),
yeojohnson = po("removeconstants") %>>% po("yeojohnson")

))

For the "learner" proxy, this is more complicated as the selection of the learner
depends on more than one search space component: The choice of the learner itself
(lrn("classif.rpart") or lrn("classif.kknn")) and the tuned k hyperparameter of
the KNN learner. To enable this we pass a transformation to .extra_trafo (Section 4.4.3).
Note that inside this transformation we clone learner.content, otherwise, we would end up
modifying the original Learner object inside the search space by reference (Section 1.5.1).

# define content for the learner proxy operator
learner.content = p_fct(list(

classif.rpart = lrn("classif.rpart"),
classif.kknn = lrn("classif.kknn")

))

# define transformation to set the content values
trafo = function(x, param_set) {

if (!is.null(x$classif.kknn.k)) {
x$learner.content = x$learner.content$clone(deep = TRUE)
x$learner.content$param_set$values$k = x$classif.kknn.k
x$classif.kknn.k = NULL

}
x

}

We can now put this all together, add the KNN tuning, and run the experiment.

search_space = ps(
preproc.content = preproc.content,
learner.content = learner.content,
# tune KKNN parameter as normal
classif.kknn.k = p_int(1, 32,

depends = learner.content == "classif.kknn"),
.extra_trafo = trafo

)

instance = tune(tnr("grid_search"), tsk_mnist, graph_learner,
rsmp("repeated_cv", folds = 3, repeats = 3), msr("classif.ce"),
search_space = search_space)

as.data.table(instance$result)[,

https://paradox.mlr-org.com/reference/Domain.html
https://mlr3.mlr-org.com/reference/Learner.html
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.(preproc.content,
classif.kknn.k = x_domain[[1]]$learner.content$param_set$values$k,
learner.content, classif.ce)

]

preproc.content classif.kknn.k learner.content classif.ce
1: yeojohnson 8 classif.kknn 0.2447

Once again, the best configuration is a KNN learner with the Yeo-Johnson transform. In
practice po("proxy") offers complete flexibility and may be more useful for more compli-
cated use cases, whereas ppl("branch") is more efficient in more straightforward scenarios.

8.4.4 Hyperband with Subsampling

This section covers advanced ML or technical details.

In Section 5.3 we learned about the Hyperband tuner and how it can make use of fidelity
parameters to efficiently tune learners. Now that you have learned about pipelines and how
to tune them, in this short section we will briefly return to Hyperband to showcase how we
can put together everything we have learned in this chapter to allow Hyperband to be used
with any Learner.

We previously saw how some learners have hyperparameters that can act naturally as fi-
delity parameters, such as the number of trees in a random forest. However, using pipelines,
we can now create a fidelity parameter for any model using po("subsample"). The frac pa-
rameter of po("subsample") controls the amount of data fed into the subsequent Learner.
In general, feeding less data to a Learner results in quicker model training but poorer
quality predictions compared to when more training data is supplied. Resampling with less
data will still give us some information about the relative performance of different model
configurations, thus making the fraction of data to subsample the perfect candidate for a
fidelity parameter.

In this example, we will optimize the SVM hyperparameters, cost and gamma, on
tsk("sonar"):

library(mlr3tuning)

learner = lrn("classif.svm", id = "svm", type = "C-classification",
kernel = "radial", cost = to_tune(1e-5, 1e5, logscale = TRUE),
gamma = to_tune(1e-5, 1e5, logscale = TRUE))

We then construct po("subsample") and specify that we want to use the frac parameter
between [3−3, 1] as our fidelity parameter and set the "budget" tag to pass this information
to Hyperband. We add this to our SVM and create a GraphLearner.

graph_learner = as_learner(
po("subsample", frac = to_tune(p_dbl(3^-3, 1, tags = "budget"))) %>>%
learner

)

https://mlr3pipelines.mlr-org.com/reference/mlr_learners_graph.html
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As good practice, we encapsulate our learner and add a fallback to prevent fatal errors
(Section 5.1).

graph_learner$encapsulate("evaluate", lrn("classif.featureless"))
graph_learner$timeout = c(train = 30, predict = 30)

Now we can tune our SVM by tuning our GraphLearner as normal, below we set eta = 3
for Hyperband.

instance = tune(tnr("hyperband", eta = 3), tsk("sonar"), graph_learner,
rsmp("cv", folds = 3), msr("classif.ce"))

ERROR [10:01:46.092] [mlr3] train: Model is empty!
This happened PipeOp svm's $train()

Warning in .__Codomain__maximization_to_minimization(self = self, private = private, : 'maximization_to_minimization' is deprecated.
Use 'direction' instead.
See help("Deprecated")
Warning in .__Codomain__maximization_to_minimization(self = self, private = private, : 'maximization_to_minimization' is deprecated.
Use 'direction' instead.
See help("Deprecated")
Warning in .__Codomain__maximization_to_minimization(self = self, private = private, : 'maximization_to_minimization' is deprecated.
Use 'direction' instead.
See help("Deprecated")

instance$result_x_domain

$subsample.frac
[1] 1

$svm.cost
[1] 5.435

$svm.gamma
[1] 0.008318

8.4.5 Feature Selection with Filter Pipelines

This section covers advanced ML or technical details.

In Section 6.1.4 we learnt about filter-based feature selection and how we can manually run
a filter and then extract the selected features, often using an arbitrary choice of thresholds
that were not tuned. Now that we have covered pipelines and tuning, we will briefly return to
feature selection to demonstrate how to automate filter-based feature selection by making
use of po("filter"). po("filter") includes the filter construction argument, which
takes a Filter object to be used as the filter method as well as a choice of parameters for
different methods of selecting features:

• filter.nfeat – Number of features to select
• filter.frac – Fraction of features to select

https://www.rdocumentation.org/packages/base/topics/funprog
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• filter.cutoff – Minimum value of filter such that features with filter values greater
than or equal to the cutoff are kept

• filter.permuted – Random permutation of features added to task before applying the
filter and all features before the permuted-th permuted features are kept

Below we use the information gain filter and select the top three features:

library(mlr3filters)
library(mlr3fselect)

task_pen = tsk("penguins")

# combine filter (keep top 3 features) with learner
po_flt = po("filter", filter = flt("information_gain"), filter.nfeat = 3)
graph = po_flt %>>% po("learner", lrn("classif.rpart"))

po("filter", filter = flt("information_gain"), filter.nfeat = 3)$
train(list(task_pen))[[1]]$feature_names

[1] "bill_depth" "bill_length" "flipper_length"

Choosing 3 as the cutoff was fairly arbitrary but by tuning a graph we can optimize this
cutoff:

# tune between 1 and total number of features
po_filter = po("filter", filter = flt("information_gain"),
filter.nfeat = to_tune(1, task_pen$ncol))

graph = as_learner(po_filter %>>% po("learner", lrn("classif.rpart")))

instance = tune(tnr("random_search"), task_pen, graph,
rsmp("cv", folds = 3), term_evals = 10)

instance$result

information_gain.filter.nfeat learner_param_vals x_domain classif.ce
1: 5 <list[2]> <list[1]> 0.0552

In this example, 5 is the optimal number of features. It can be especially useful in feature
selection to visualize the tuning results as there may be cases where the optimal result is
only marginally better than a result with less features (which would lead to a model that
is quicker to train and possibly easier to interpret).

autoplot(instance)
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Figure 8.14: Model performance with different numbers of features, selected by an informa-
tion gain filter.

Now we can see that four variables may be equally as good in this case so we could consider
going forward by selecting four features and not six as suggested by instance$result.

8.5 Conclusion
In this chapter, we built on what we learned in Chapter 7 to develop complex non-sequential
Graphs. We saw how to build our own graphs, as well as how to make use of ppl() to load
Graphs that are available in mlr3pipelines. We then looked at different ways to tune
pipelines, including joint tuning of hyperparameters and tuning the selection of PipeOps in
a Graph, enabling the construction of simple, custom AutoML systems. In Chapter 9 we
will study in more detail how to use pipelines for data preprocessing.

Table 8.1: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor/Function Fields/Methods
Graph ppl() $train(); $predict()
Selector selector_grep();

selector_type();
selector_invert()

-

PipeOpBranch;
PipeOpUnbranch

po("branch");
po("unbranch")

-

PipeOpProxy po("proxy") -

https://mlr3pipelines.mlr-org.com
https://mlr3pipelines.mlr-org.com/reference/Graph.html
https://mlr3pipelines.mlr-org.com/reference/ppl.html
https://mlr3pipelines.mlr-org.com/reference/Selector.html
https://mlr3pipelines.mlr-org.com/reference/Selector.html
https://mlr3pipelines.mlr-org.com/reference/Selector.html
https://mlr3pipelines.mlr-org.com/reference/Selector.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_branch.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_unbranch.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_proxy.html
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8.6 Exercises
1. Create a graph that replaces all numeric columns that do not contain missing val-

ues with their PCA transform. Solve this in two ways, using affect_columns
in a sequential graph, and using po("select") in a non-sequential graph.
Train the graph on tsk("pima") to check your result. Hint: You may find
selector_missing() useful.

2. The po("select") in Section 8.3.2 is necessary to remove redundant predic-
tions (recall this is a binary classification task so we do not require predictions
of both classes). However, if this was a multiclass classification task, then us-
ing selector_grep() would need to be called with a pattern for all predic-
tion columns that should be kept, which would be inefficient. Instead it would
be more appropriate to provide a pattern for the single class to remove. How
would you do this using the Selector functions provided by mlr3pipelines?
Implement this and train the modified stacking pipeline on tsk("wine"), using
lrn("classif.multinom") as the level 1 learner.

3. How would you solve the previous exercise without explicitly naming the class
you want to exclude, so that your graph works for any classification task? Hint:
look at the selector_subsample in Section 8.3.1.

4. (*) Create your own “minimal AutoML system” by combining pipelines, branching
and tuning. It should allow automatic preprocessing and the automatic selection
of a well-performing learning algorithm. Both your PipeOps and models should
be tuned. Your system should feature options for two preprocessing steps (im-
putation and factor encoding) and at least three learning algorithms to choose
from. You can optimize this via random search, or try to use a more advanced
tuning algorithm. Test it on at least three different data sets and compare its
performance against an untuned random forest via nested resampling.
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Chapter 7 and Chapter 8 provided a technical introduction to mlr3pipelines, this chapter
will now demonstrate how to use those pipelines to tackle common problems when prepro-
cessing data for ML, including factor encoding, imputation of missing values, feature and
target transformations, and functional feature extraction. Feature selection, an important
preprocessing method, is covered in Chapter 6.

In this book, preprocessing refers to everything that happens with data before it is used to
fit a model, while postprocessing encompasses everything that occurs with predictions after
the model is fitted.

Data cleaning Data
Cleaning

is an important part of preprocessing that involves the removal of errors,
noise, and redundancy in the data; we only consider data cleaning very briefly as it is
usually performed outside of mlr3 on the raw dataset.

Another aspect of preprocessing is feature engineering Feature
Engineering

, which covers all other transforma-
tions of data before it is fed to the machine learning model, including the creation of
features from possibly unstructured data, such as written text, sequences or images. The
goal of feature engineering is to enable the data to be handled by a given learner, and/or
to further improve predictive performance. It is important to note that feature engineering
helps mostly for simpler algorithms, while highly complex models usually gain less from it
and require little data preparation to be trained. Common difficulties in data that can be
solved with feature engineering include features with skewed distributions, high-cardinality
categorical features, missing observations, high dimensionality and imbalanced classes in
classification tasks. Deep learning has shown promising results in automating feature engi-
neering, however, its effectiveness depends on the complexity and nature of the data being
processed, as well as the specific problem being addressed. Typically it can work well with
natural language processing and computer vision problems, while for standard tabular data,
tree-based ensembles such as a random forest or gradient boosting are often still superior
(and easier to handle). However, tabular deep learning approaches are currently catching up
quickly. Hence, manual feature engineering is still often required but with mlr3pipelines,
which can simplify the process as much as possible.

As we work through this chapter we will use an adapted version of the Ames housing data
(De Cock 2011). We changed the data slightly and introduced some additional (artificial)
problems to showcase as many aspects of preprocessing as possible on a single dataset. The
modified version is shipped with mlr3data and the code to recreate this version of the data
from the original raw data can be found at https://github.com/mlr-org/mlr3data/ in
the directory data-raw. This original dataset was collected as an alternative to the Boston
Housing data and is commonly used to demonstrate feature engineering in ML. Raw and
processed versions of the data can be directly loaded from the AmesHousing package. The
dataset includes 2,930 residential properties (rows) situated in Ames, Iowa, sold between
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https://mlr3pipelines.mlr-org.com
https://mlr3data.mlr-org.com
https://github.com/mlr-org/mlr3data/
https://cran.r-project.org/package=AmesHousing
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2006 and 2010. It contains 81 features about various aspects of the property, the size and
shape of the lot, and information about its condition and quality. The prediction target is
the sale price in USD, hence it is a regression task.

ames = mlr3data::ames_housing

9.1 Data Cleaning
As a first step, we explore the data and look for simple problems such as constant or
duplicated features. This can be done quite efficiently with a package like DataExplorer or
skimr which can be used to create a large number of informative plots.

Below we summarize the most important findings for data cleaning, but we only consider
this aspect in a cursory manner:

# 1. `Misc_Feature_2` is a factor with only a single level `Othr`.
summary(ames$Misc_Feature_2)

Othr
2930

# 2. `Condition_2` and `Condition_3` are identical.
identical(ames$Condition_2, ames$Condition_3)

[1] TRUE

# 3. `Lot_Area` and `Lot_Area_m2` are same data on different scales
cor(ames$Lot_Area, ames$Lot_Area_m2)

[1] 1

For all three problems, simply removing the problematic features (or feature in a pair) might
be the best course of action.

to_remove = c("Lot_Area_m2", "Condition_3", "Misc_Feature_2")

Other typical problems that should be checked are:

1. ID columns, i.e., columns that are unique for every observation should be removed
or tagged.

2. NAs not correctly encoded, e.g. as "NA" or ""
3. Semantic errors in the data, e.g., negative Lot_Area
4. Numeric features encoded as categorical for learners that can not handle such

features.

Before we continue with feature engineering we will create a task, measure, and resampling
strategy to use throughout the chapter.

https://cran.r-project.org/package=DataExplorer
https://cran.r-project.org/package=skimr
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tsk_ames = as_task_regr(ames, target = "Sale_Price", id = "ames")
# remove problematic features
tsk_ames$select(setdiff(tsk_ames$feature_names, to_remove))

msr_mae = msr("regr.mae")
rsmp_cv3 = rsmp("cv", folds = 3)
rsmp_cv3$instantiate(tsk_ames)

Lastly, we run a very simple experiment to verify our setup works as expected with a simple
featureless baseline, note below we set robust = TRUE to always predict the median sale
price as opposed to the mean.

lrn_baseline = lrn("regr.featureless", robust = TRUE)
lrn_baseline$id = "Baseline"
rr_baseline = resample(tsk_ames, lrn_baseline, rsmp_cv3)
rr_baseline$aggregate(msr_mae)

regr.mae
56056

9.2 Factor Encoding
Many machine learning algorithm implementations, such as XGBoost (Chen and Guestrin
2016), cannot handle categorical data and so categorical features must be encoded into
numerical variables.

lrn_xgb = lrn("regr.xgboost", nrounds = 100)
lrn_xgb$train(tsk_ames)

Error: <TaskRegr:ames> has the following unsupported feature types: factor

Categorical features can be grouped by their cardinality, which refers to the number of levels
they contain: binary features (two levels), low-cardinality features, and high-cardinality
features; there is no universal threshold for when a feature should be considered high-
cardinality and this threshold can even be tuned. For now, we will consider high-cardinality
to be features with more than 10 levels:

names(which(lengths(tsk_ames$levels()) > 10))

[1] "Exterior_1st" "Exterior_2nd" "MS_SubClass" "Neighborhood"

Binary features can be trivially encoded by setting one of the feature levels to 1 and the
other to 0.

names(which(lengths(tsk_ames$levels()) == 2))

[1] "Alley" "Central_Air" "Street"
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Low-cardinality features can be handled by one-hot encodingOne-hot
Encoding

. One-hot encoding is a process
of converting categorical features into a binary representation, where each possible category
is represented as a separate binary feature. Theoretically, it is sufficient to create one less
binary feature than levels, as setting all binary features to zero is also a valid representation.
This is typically called dummy or treatment encoding and is required if the learner is a
generalized linear model (GLM) or additive model (GAM).

Some learners support handling categorical features but may still crash for high-cardinality
features if they internally apply encodings that are only suitable for low-cardinality fea-
tures, such as one-hot encoding. Impact encoding (Micci-Barreca 2001) is a good approach
for handling high-cardinality features. Impact encodingImpact

Encoding
converts categorical features into

numeric values. The idea behind impact encoding is to use the target feature to create a
mapping between the categorical feature and a numerical value that reflects its importance
in predicting the target feature. Impact encoding involves the following steps:

1. Group the target variable by the categorical feature.
2. Compute the mean of the target variable for each group.
3. Compute the global mean of the target variable.
4. Compute the impact score for each group as the difference between the mean of

the target variable for the group and the global mean of the target variable.
5. Replace the categorical feature with the impact scores.

Impact encoding preserves the information of the categorical feature while also creating a
numerical representation that reflects its importance in predicting the target. Compared
to one-hot encoding, the main advantage is that only a single numeric feature is created
regardless of the number of levels of the categorical features, hence it is especially useful
for high-cardinality features. As information from the target is used to compute the impact
scores, the encoding process must be embedded in cross-validation to avoid leakage between
training and testing data (Chapter 3).

As well as encoding features, other basic preprocessing steps for categorical features include
removing constant features (which only have one level and may have been removed as part
of data cleaning), and collapsing levels that occur very rarely. These types of problems can
occur as artifacts of resampling as the dataset size is further reduced. Stratification on such
features would be an alternative way to mitigate this (Section 3.2.5).

In the code below we use po("removeconstants") to remove features with only one level,
po("collapsefactors") to collapse levels that occur less than 1% of the time in the data,
po("encodeimpact") to impact-encode high-cardinality features, po("encode", method =
"one-hot") to one-hot encode low-cardinality features, and finally po("encode", method
= "treatment") to treatment encode binary features.

factor_pipeline =
po("removeconstants") %>>%
po("collapsefactors", no_collapse_above_prevalence = 0.01) %>>%
po("encodeimpact",

affect_columns = selector_cardinality_greater_than(10),
id = "high_card_enc") %>>%

po("encode", method = "one-hot",
affect_columns = selector_cardinality_greater_than(2),
id = "low_card_enc") %>>%
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po("encode", method = "treatment",
affect_columns = selector_type("factor"), id = "binary_enc")

The order in which operations are performed matters here: po("encodeimpact") converts
high-cardinality factor type features into numeric features, so these will not be affected by
the po("encode") operators that come afterwards. Therefore, the one-hot encoding PipeOp
does not need to specify not to affect high-cardinality features. Likewise, once the treatment
encoding PipeOp sees the data, all non-binary factor features have been converted, so it
will only affect binary factors by default.

Now we can apply this pipeline to our xgboost model to use it in a benchmark experiment; we
also compare a simpler pipeline that only uses one-hot encoding to demonstrate performance
differences resulting from different strategies.

glrn_xgb_impact = as_learner(factor_pipeline %>>% lrn_xgb)
glrn_xgb_impact$id = "XGB_enc_impact"

glrn_xgb_one_hot = as_learner(po("encode") %>>% lrn_xgb)
glrn_xgb_one_hot$id = "XGB_enc_onehot"

bmr = benchmark(benchmark_grid(tsk_ames,
c(lrn_baseline, glrn_xgb_impact, glrn_xgb_one_hot), rsmp_cv3))

bmr$aggregate(measure = msr_mae)[, .(learner_id, regr.mae)]

learner_id regr.mae
1: Baseline 56056
2: XGB_enc_impact 16068
3: XGB_enc_onehot 16098

In this small experiment, we see that the difference between the extended factor encoding
pipeline and the simpler one-hot encoding strategy pipeline is only very small. If you are
interested in learning more about different encoding strategies, including a benchmark study
comparing them, we recommend Pargent et al. (2022).

9.3 Missing Values
A common problem in real-world data is missing values in features. In the Ames dataset,
several variables have at least one missing data point:

# print first five with missing data
names(which(tsk_ames$missings() > 0))[1:5]

[1] "Alley" "BsmtFin_SF_1" "BsmtFin_SF_2" "BsmtFin_Type_1"
[5] "BsmtFin_Type_2"

Many learners cannot handle missing values automatically (e.g., lrn("regr.ranger") and
lrn("regr.lm")) and others may be able to handle missing values but may use simple
methods that are not ideal (e.g., just omitting rows with missing data).
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The simplest data imputationData
Imputation

method is to replace missing values by the fea-
ture’s mean (po("imputemean")) (Figure 9.1), median (po("imputemedian")), or mode
(po("imputemode")). Alternatively, one can impute by sampling from the empirical distri-
bution of the feature, for example a histogram (po("imputehist")). Instead of guessing at
what a missing feature might be, missing values could instead be replaced by a new level,
for example, called .MISSING (po("imputeoor")). For numeric features, Ding and Simonoff
(2010) show that for binary classification and tree-based models, encoding missing values
out-of-range (OOR), e.g. a constant value above the largest observed value, is a reasonable
approach.

Figure 9.1: Mean imputation of missing values using observed values.

It is often important for predictive tasks that you keep track of missing data as it is common
for missing data to be informative in itself. To preserve the information about which data
was missing, imputation should be tracked by adding binary indicator features (one for
each imputed feature) that are 1 if the feature was missing for an observation and 0 if
it was present (po("missind")). It is important to note that recording this information
will not prevent problems in model interpretation on its own. As a real-world example,
medical data are typically collected more extensively for White communities than for racially
minoritized communities. Imputing data from minoritized communities would at best mask
this data bias, and at worst would make the data bias even worse by making vastly inaccurate
assumptions (see Chapter 14 for data bias and algorithmic fairness).

In the code below we create a pipeline from the PipeOps listed above as well as making use
of po("featureunion") to combine multiple PipeOps acting on the "integer" columns.

impute_hist = list(
po("missind", type = "integer",

affect_columns = selector_type("integer")
),
po("imputehist", affect_columns = selector_type("integer"))

) %>>%
po("featureunion") %>>%
po("imputeoor", affect_columns = selector_type("factor"))

impute_hist$plot(horizontal = TRUE)

https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
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Figure 9.2: Pipeline to impute missing values of numeric features by histogram with binary
indicators and missings in categoricals out-of-range with a new level.

Using this pipeline we can now run experiments with lrn("regr.ranger"), which cannot
handle missing data; we also compare a simpler pipeline that only uses OOR imputation to
demonstrate performance differences resulting from different strategies.

glrn_rf_impute_hist = as_learner(impute_hist %>>% lrn("regr.ranger"))
glrn_rf_impute_hist$id = "RF_imp_Hist"

glrn_rf_impute_oor = as_learner(po("imputeoor") %>>% lrn("regr.ranger"))
glrn_rf_impute_oor$id = "RF_imp_OOR"

design = benchmark_grid(tsk_ames,
c(glrn_rf_impute_hist, glrn_rf_impute_oor), rsmp_cv3)

bmr_new = benchmark(design)

WARN [10:04:33.759] [mlr3] Learner 'regr.ranger' received task with different column info (feature type or level ordering) during train and predict.
WARN [10:04:41.786] [mlr3] Learner 'regr.ranger' received task with different column info (feature type or level ordering) during train and predict.

bmr$combine(bmr_new)
bmr$aggregate(measure = msr_mae)[, .(learner_id, regr.mae)]

learner_id regr.mae
1: Baseline 56056
2: XGB_enc_impact 16068
3: XGB_enc_onehot 16098
4: RF_imp_Hist 16400
5: RF_imp_OOR 16395

Similarly to encoding, we see limited differences in performance between the different im-
putation strategies. This is expected here and confirms the findings of Ding and Simonoff
(2010) – out-of-range imputation is a simple yet effective imputation for tree-based methods.

Many more advanced imputation strategies exist, including model-based imputation where
machine learning models are used to predict missing values, and multiple imputation where
data is repeatedly resampled and imputed in each sample (e.g., by mean imputation) to
attain more robust estimates. However, these more advanced techniques rarely improve the
models predictive performance substantially and the simple imputation techniques intro-
duced above are usually sufficient (Poulos and Valle 2018). Nevertheless, these methods are
still important, as finding imputations that fit well to the distribution of the observed values
allows a model to be fitted that can be interpreted and analyzed in a second step.
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9.4 Pipeline Robustify
mlr3pipelines offers a simple and reusable pipeline for (among other things) imputation
and factor encoding called ppl("robustify")

ppl(“robustify”)
, which includes sensible defaults that can be

used most of the time when encoding or imputing data. The pipeline includes the following
PipeOps (some are applied multiple times and most use selectors):

1. po("removeconstants") – Constant features are removed.
2. po("colapply") – Character and ordinal features are encoded as categorical, and

date/time features are encoded as numeric.
3. po("imputehist") – Numeric features are imputed by histogram sampling.
4. po("imputesample") – Logical features are imputed by sampling from the em-

pirical distribution – this only affects the $predict()-step.
5. po("missind") – Missing data indicators are added for imputed numeric and

logical variables.
6. po("imputeoor") – Missing values of categorical features are encoded with a new

level.
7. po("fixfactors") – Fixes levels of categorical features such that the same levels

are present during prediction and training (which may involve dropping empty
factor levels).

8. po("imputesample") – Missing values in categorical features introduced from
dropping levels in the previous step are imputed by sampling from the empirical
distributions.

9. po("collapsefactors") – Categorical features levels are collapsed (starting from
the rarest factors in the training data) until there are less than a certan number of
levels, controlled by the max_cardinality argument (with a conservative default
of 1000).

10. po("encode") – Categorical features are one-hot encoded.
11. po("removeconstants") – Constant features that might have been created in

the previous steps are removed.

ppl("robustify") has optional arguments task and learner. If these are provided, then
the resulting pipeline will be set up to handle the given task and learner specifically, for
example, it will not impute missing values if the learner has the "missings" property, or if
there are no missing values in the task to begin with. By default, when task and learner
are not provided, the graph is set up to be defensive: it imputes all missing values and
converts all feature types to numerics.

Linear regression is a simple model that cannot handle most problems that we may face when
processing data, but with the ppl("robustify") we can now include it in our experiment:

glrn_lm_robust = as_learner(ppl("robustify") %>>% lrn("regr.lm"))
glrn_lm_robust$id = "lm_robust"

bmr_new = benchmark(benchmark_grid(tsk_ames, glrn_lm_robust, rsmp_cv3))
bmr$combine(bmr_new)
bmr$aggregate(measure = msr_mae)[, .(learner_id, regr.mae)]

learner_id regr.mae

https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
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1: Baseline 56056
2: XGB_enc_impact 16068
3: XGB_enc_onehot 16098
4: RF_imp_Hist 16400
5: RF_imp_OOR 16395
6: lm_robust 16298

Robustifying the linear regression results in a model that vastly outperforms the featureless
baseline and is competitive when compared to more complex machine learning models.

9.5 Transforming Features and Targets
Simple transformations of features and the target can be beneficial (and sometimes essential)
for certain learners. In particular, log transformation of the target can help in making the
distribution more symmetrical and can help reduce the impact of outliers. Similarly, log
transformation of skewed features can help to reduce the influence of outliers. In Figure 9.3
we plot the distribution of the target in the ames dataset and then the log-transformed
target, we can see how simply taking the log of the variable results in a distribution that is
much more symmetrical and with fewer outliers.

library(patchwork)

# copy ames data
log_ames = copy(ames)
# log transform target
log_ames[, logSalePrice := log(Sale_Price)]
# plot
autoplot(as_task_regr(log_ames, target = "Sale_Price")) +
autoplot(as_task_regr(log_ames, target = "logSalePrice"))

Normalization of features may also be necessary to ensure features with a larger scale do
not have a higher impact, which is especially important for distance-based methods such as
k-nearest neighbors models or regularized parametric models such as Lasso or Elastic net.
Many models internally scale the data if required by the algorithm so most of the time we do
not need to manually do this in preprocessing, though if this is required then po("scale")
can be used to center and scale numeric features.

Any transformations applied to the target during training must be inverted during model
prediction to ensure predictions are made on the correct scale. By example, say we are
interested in log transforming the target, then we would take the following steps:

df = data.table(x = runif(5), y = runif(5, 10, 20))
df

x y
1: 0.48004 10.25
2: 0.14466 10.75
3: 0.05795 18.30
4: 0.65004 17.34
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Figure 9.3: Distribution of house sales prices (in USD) in the ames dataset before (left)
and after (right) log transformation. Before transformation there is a skewed distribution
of prices towards cheaper properties with a few outliers of very expensive properties. After
transformation the distribution is much more symmetrical with the majority of points evenly
spread around the same range.

5: 0.37355 10.48

# 1. log transform the target
df[, y := log(y)]
df$y

[1] 2.327 2.375 2.907 2.853 2.350

# 2. make linear regression predictions
# predictions on the log-transformed scale
yhat = predict(lm(y ~ x, df), df)
yhat

1 2 3 4 5
2.556 2.571 2.575 2.548 2.561

# 3. transform to correct scale with inverse of log function
# predictions on the original scale
exp(yhat)

1 2 3 4 5
12.88 13.08 13.13 12.79 12.95

In this simple experiment, we could manually transform and invert the target, however, this
is much more complex when dealing with resampling and benchmarking experiments and so
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the pipeline ppl("targettrafo") will do this heavy lifting for you. The pipeline includes a
parameter targetmutate.trafo for the transformation to be applied during training to the
target, as well as targetmutate.inverter for the transformation to be applied to invert
the original transformation during prediction. So now let us consider the log transformation
by adding this pipeline to our robust linear regression model:

glrn_log_lm_robust = as_learner(ppl("targettrafo",
graph = glrn_lm_robust,
targetmutate.trafo = function(x) log(x),
targetmutate.inverter = function(x) list(response = exp(x$response))))

glrn_log_lm_robust$id = "lm_robust_logtrafo"

bmr_new = benchmark(benchmark_grid(tsk_ames, glrn_log_lm_robust,
rsmp_cv3))

WARN [10:04:55.769] [mlr3] Learner 'lm_robust' received task with different column info (feature type or level ordering) during train and predict.
WARN [10:04:59.000] [mlr3] Learner 'lm_robust' received task with different column info (feature type or level ordering) during train and predict.
WARN [10:05:01.827] [mlr3] Learner 'lm_robust' received task with different column info (feature type or level ordering) during train and predict.

bmr$combine(bmr_new)
bmr$aggregate(measure = msr_mae)[, .(learner_id, regr.mae)]

learner_id regr.mae
1: Baseline 56056
2: XGB_enc_impact 16068
3: XGB_enc_onehot 16098
4: RF_imp_Hist 16400
5: RF_imp_OOR 16395
6: lm_robust 16298
7: lm_robust_logtrafo 15557

With the target transformation and the ppl("robustify"), the simple linear regression
now appears to be the best-performing model.

9.6 Functional Feature Extraction
As a final step of data preprocessing, we will look at feature extraction from functional fea-
tures. In Chapter 6 we look at automated feature selection and how automated approaches
with filters and wrappers can be used to reduce a dataset to an optimized set of features.
Functional feature extraction differs from this process as we are now interested in features
that are dependent on one another and together may provide useful information but not
individually. Figure 9.4 visualizes the difference between regular and functional features.

As a concrete example, consider the power consumption of kitchen appliances in houses in
the Ames dataset.

energy_data = mlr3data::energy_usage
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Figure 9.4: Variables x1,x2,x3 are regular features, variables xt1,…,xt365 are functional
features that could be plotted to identify important properties.

In this dataset, each row represents one house and each feature is the total power consump-
tion from kitchen appliances at a given time (Bagnall et al. 2017). The consumption is
measured in two-minute intervals, resulting in 720 features.

library(ggplot2)
ggplot(data.frame(y = as.numeric(energy_data[1, ])),

aes(y = y, x = 1:720)) +
geom_line() + theme_minimal() +
labs(x = "2-Minute Interval", y = "Power Consumption")
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Figure 9.5: Energy consumption of one example house in a day, recorded in two-minute
intervals.
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Adding these 720 features to our full dataset is a bad idea as each individual feature does
not provide meaningful information, similarly, we cannot automate selection of the best
feature subset for the same reason. Instead, we can extract information about the curves
to gain insights into the kitchen’s overall energy usage. For example, we could extract the
maximum used wattage, overall used wattage, number of peaks, and other similar features.

To extract features we will write our own PipeOp that inherits from
PipeOpTaskPreprocSimple. To do this we add a private method called .transform_dt
that hardcodes the operations in our task. In this example, we select the functional features
(which all start with “att”), extract the mean, minimum, maximum, and variance of the
power consumption, and then remove the functional features. To read more about building
custom PipeOps, open the corresponding vignette by running vignette("extending",
package = "mlr3pipelines") in R.

PipeOpFuncExtract = R6::R6Class("PipeOpFuncExtract",
inherit = mlr3pipelines::PipeOpTaskPreprocSimple,
private = list(

.transform_dt = function(dt, levels) {
ffeat_names = paste0("att", 1:720)
ffeats = dt[, ..ffeat_names]
dt[, energy_means := apply(ffeats, 1, mean)]
dt[, energy_mins := apply(ffeats, 1, min)]
dt[, energy_maxs := apply(ffeats, 1, max)]
dt[, energy_vars := apply(ffeats, 1, var)]
dt[, (ffeat_names) := NULL]
dt

}
)

)

Before using this in an experiment we first test that the PipeOp works as expected.

tsk_ames_ext = cbind(ames, energy_data)
tsk_ames_ext = as_task_regr(tsk_ames_ext, "Sale_Price", "ames_ext")
# remove the redundant variables identified at the start of this chapter
tsk_ames_ext$select(setdiff(tsk_ames_ext$feature_names, to_remove))

func_extractor = PipeOpFuncExtract$new("energy_extract")
tsk_ames_ext = func_extractor$train(list(tsk_ames_ext))[[1]]
tsk_ames_ext$data(1,
c("energy_means", "energy_mins", "energy_maxs", "energy_vars"))

energy_means energy_mins energy_maxs energy_vars
1: 1.062 0.01427 21.98 3.708

These outputs look sensible compared to Figure 9.5 so we can now run our final benchmark
experiment using feature extraction. We do not need to add the PipeOp to each learner as
we can apply it once (as above) before any model training by applying it to all available
data.

https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
https://mlr3pipelines.mlr-org.com/reference/PipeOpTaskPreprocSimple.html
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learners = list(lrn_baseline, lrn("regr.rpart"), glrn_xgb_impact,
glrn_rf_impute_oor, glrn_lm_robust, glrn_log_lm_robust)

bmr_final = benchmark(benchmark_grid(c(tsk_ames_ext, tsk_ames), learners,
rsmp_cv3))

WARN [10:05:14.597] [mlr3] Learner 'regr.ranger' received task with different column info (feature type or level ordering) during train and predict.
WARN [10:05:28.721] [mlr3] Learner 'lm_robust' received task with different column info (feature type or level ordering) during train and predict.
WARN [10:05:32.123] [mlr3] Learner 'lm_robust' received task with different column info (feature type or level ordering) during train and predict.
WARN [10:05:35.656] [mlr3] Learner 'lm_robust' received task with different column info (feature type or level ordering) during train and predict.
WARN [10:05:45.286] [mlr3] Learner 'regr.ranger' received task with different column info (feature type or level ordering) during train and predict.
WARN [10:05:57.656] [mlr3] Learner 'lm_robust' received task with different column info (feature type or level ordering) during train and predict.
WARN [10:06:00.459] [mlr3] Learner 'lm_robust' received task with different column info (feature type or level ordering) during train and predict.
WARN [10:06:03.234] [mlr3] Learner 'lm_robust' received task with different column info (feature type or level ordering) during train and predict.

perf = bmr_final$aggregate(measure = msr_mae)
perf[order(learner_id, task_id), .(task_id, learner_id, regr.mae)]

task_id learner_id regr.mae
1: ames Baseline 56056
2: ames_ext Baseline 56056
3: ames RF_imp_OOR 16354
4: ames_ext RF_imp_OOR 14320
5: ames XGB_enc_impact 16068
6: ames_ext XGB_enc_impact 14400
7: ames lm_robust 16291
8: ames_ext lm_robust 15093
9: ames lm_robust_logtrafo 15555
10: ames_ext lm_robust_logtrafo 13905
11: ames regr.rpart 27371
12: ames_ext regr.rpart 27111

The final results indicate that adding these extracted features improved the performance of
all models (except the featureless baseline).

In this example, we could have just applied the transformations to the dataset directly
and not used a PipeOp. However, the advantage of using the PipeOp is that we could have
chained it to a subset of learners to prevent a blow-up of experiments in the benchmark
experiment.

9.7 Conclusion
In this chapter, we built on everything learned in Chapter 7 and Chapter 8 to look at con-
crete usage of pipelines for data preprocessing. We focused primarily on feature engineering,
which can make use of mlr3pipelines to automate preprocessing as much as possible while
still ensuring user control. We looked at factor encoding for categorical variables, imputing
missing data, transforming variables, and feature extraction. Preprocessing is almost always
required in machine learning experiments, and applying the ppl("robustify") will help in

https://mlr3pipelines.mlr-org.com
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many cases to simplify this process by applying the most common preprocessing steps, we
will see this in use in Chapter 11.

We have not introduced any new classes in this chapter, so instead Table 9.1 lists the
PipeOps and Graphs we discussed.

Table 9.1: PipeOps and Graphs discussed in this chapter.

PipeOp/Graph Description
PipeOpRemoveConstants Remove variables consisting of one value
PipeOpCollapseFactors Combine rare factor levels
PipeOpEncodeImpact Impact encoding
PipeOpEncode Other factor encoding methods
PipeOpMissInd Add an indicator column to track missing data
PipeOpImputeHist Impute missing data by sampling from a histogram
PipeOpImputeOOR Impute missing data with out-of-range values
pipeline_robustify Graph with common imputation and encoding

methods
pipeline_targettrafo Graph to transform target during training and invert

transformation during prediction

9.8 Exercises
We will consider a prediction problem similar to the one from this chapter, but using the
King County Housing regression data instead (available with tsk("kc_housing")). To eval-
uate the models, we again use 10-fold CV, mean absolute error and lrn("regr.glmnet").
For now we will ignore the date column and simply remove it:

library("mlr3data")
kc_housing = tsk("kc_housing")
kc_housing$select(setdiff(kc_housing$feature_names, "date"))

1. Have a look at the features, are there any features which might be problematic?
If so, change or remove them. Check the dataset and learner properties to under-
stand which preprocessing steps you need to do.

2. Build a suitable pipeline that allows glmnet to be trained on the dataset. Con-
struct a new glmnet model with ppl("robustify"). Compare the two pipelines
in a benchmark experiment.

3. Now consider the date feature: How can you extract information from this feature
in a way that glmnet can use? Does this improve the performance of your pipeline?
Finally, consider the spatial nature of the dataset. Can you extract an additional
feature from the lat / long coordinates? (Hint: Downtown Seattle has lat/long
coordinates 47.605/122.334).

https://mlr3pipelines.mlr-org.com/reference/PipeOp.html
https://mlr3pipelines.mlr-org.com/reference/Graph.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_removeconstants.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_collapsefactors.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_encodeimpact.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_encode.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_missind.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_imputehist.html
https://mlr3pipelines.mlr-org.com/reference/mlr_pipeops_imputeoor.html
https://mlr3pipelines.mlr-org.com/reference/mlr_graphs_robustify.html
https://mlr3pipelines.mlr-org.com/reference/mlr_graphs_targettrafo.html
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In the previous chapters, we demonstrated how to turn machine learning concepts and
methods into code. In this chapter we will turn to those technical details that can be
important for more advanced uses of mlr3, including:

• Parallelization with the future framework (Section 10.1);
• Error handling and debugging (Section 10.2);
• Adjusting the logger to your needs (Section 10.3);
• Working with out-of-memory data, e.g., data stored in databases (Section 10.4); and
• Adding new classes to mlr3 (Section 10.5).

10.1 Parallelization
The term parallelization refers to running multiple algorithms in parallel, i.e., executing
them simultaneously on multiple CPU cores, CPUs, or computational nodes. Not all algo-
rithms can be parallelized, but when they can, parallelization allows significant savings in
computation time.

In general, there are many possibilities to parallelize, depending on the hardware to run the
computations. If you only have a single CPU with multiple cores, then threads or processes
are ways to utilize all cores on a local machine. If you have multiple machines on the other
hand, they can communicate and exchange information via protocols such as network sockets
or the Message Passing Interface. Larger computational sites rely on scheduling systems
to orchestrate the computation for multiple users and usually offer a shared network file
system all machines can access. Interacting with scheduling systems on compute clusters is
covered in Section 11.2 using the R package batchtools.

There are a few pieces of terminology associated with parallelization that we will use in this
section:

• The parallelization backend Paralleliza-
tion
Backend

is the hardware to parallelize with a respective interface pro-
vided by an R package. Many parallelization backends have different APIs, so we use the
future package as a unified, abstraction layer for many parallelization backends. From
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a user perspective, mlr3 interfaces with future directly so all you will need to do is
configure the backend before starting any computations.

• The Main process is the R session or process that orchestrates the computational work,
called jobs.

• Workers are the R sessions, processes, or machines that receive the jobs, perform calcula-
tions, and then send the results back to Main.

An important step in parallel programming involves the identification of sections of the
program flow that are both time-consuming (‘bottlenecks’) and can run independently of a
different section, i.e., section A’s operations are not dependent on the results of section B’s
operations, and vice versa. Fortunately, these sections are usually relatively easy to spot for
machine learning experiments:

1. Training of a learning algorithm (or other computationally intensive parts of a
machine learning pipeline) may contain independent sections which can run in
parallel, e.g.

•A single decision tree iterates over all features to find the best split point, for
each feature independently.

•A random forest usually fits hundreds of trees independently.
The key principle that makes parallelization possible for these examples (and
in general in many fields of statistics and ML) is called data parallelismData

Parallelism
, which

means the same operation is performed concurrently on different elements of the
input data. Parallelization of learning algorithms is covered in Section 10.1.1.

2. Resampling consists of independent repetitions of train-test-splits and benchmark-
ing consists of multiple independent resamplings (Section 10.1.2).

3. Tuning (Chapter 4) often is iterated benchmarking, embedded in a sequential
procedure that determines the hyperparameter configurations to try next. While
many tuning algorithms are inherently sequential to some degree, there are
some (e.g., random search) that can propose multiple configurations in parallel
to be evaluated independently, providing another level for parallelization (Sec-
tion 10.1.4).

4. Predictions of a single learner for multiple observations can be computed inde-
pendently (Section 10.1.5).

These examples are referred to as “embarrassingly parallelEmbarrass-
ingly

Parallel

” as they are so easy to parallelize.
If we can formulate the problem as a function that can be passed to map-like functions such
as lapply(), then you have an embarrassingly parallel problem. However, just because a
problem can be parallelized, it does not follow that every operation in a problem should be
parallelized. Starting and terminating workers as well as possible communication between
workers comes at a price in the form of additionally required runtime which is called par-
allelization overheadParalleliza-

tion
Overhead

. This overhead strongly varies between parallelization backends and
must be carefully weighed against the runtime of the sequential execution to determine if
parallelization is worth the effort. If the sequential execution is comparably fast, enabling
parallelization may introduce additional complexity with little runtime savings, or could
even slow down the execution. It is possible to control the granularityGranularity of the parallelization
to reduce the parallelization overhead. For example, we could reduce the overhead of par-
allelizing a for-loop with 1000 iterations on four CPU cores by chunking the work of the
1000 jobs into four computational jobs performing 250 iterations each, resulting in four big
jobs and not 1000 small ones.

This effect is illustrated in the following code chunk using a socket cluster with the parallel
package, which has a chunk.size option so we do not need to manually create chunks:

https://www.rdocumentation.org/packages/base/topics/lapply
https://cran.r-project.org/package=parallel
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# set up a socket cluster with 4 workers on the local machine
library(parallel)
cores = 4
cl = makeCluster(cores)

# vector to operate on
x = 1:10000

# fast function to parallelize
f = function(y) sqrt(y + 1)

# unchunked approach: 1000 jobs
system.time({parSapply(cl, x, f, chunk.size = 1)})

user system elapsed
0.750 0.236 1.104

# chunked approach: 4 jobs
system.time({parSapply(cl, x, f, chunk.size = 2500)})

user system elapsed
0.004 0.001 0.063

Whenever you have the option to control the granularity by setting the chunk size, you
should aim for at least as many jobs as workers. However, if there are too few job chunks
with strongly dissimilar runtimes, the system may end up waiting for the last chunk to finish,
while other resources are idle. This is referred to as synchronization overhead Synchroniza-

tion
Overhead

. You should
therefore aim for chunks with a runtime of at least several seconds, so that the parallelization
overhead remains reasonable, while still having enough chunks to ensure that you can fully
utilize the system. If you have heterogeneous runtimes, you can consider grouping jobs
so that the runtimes of the chunks are more homogeneous. If runtimes can be estimated,
then both batchtools::binpack() and batchtools::lpt() (documented together with
the chunk() function) are useful for chunking jobs. If runtimes cannot be estimated, then it
can be useful to randomize the order of jobs. Otherwise jobs could be accidentally ordered
by runtime, for example because they are sorted by a hyperparameter that has a strong
influence on training time. Naively chunking jobs could then lead to some chunks containing
much more expensive jobs than others, resulting in avoidable underutilization of resources.
mlr3misc ships with the functions chunk() and chunk_vector() that conveniently chunk
jobs and also shuffle them by default. There are also options to control the chunk size for
parallelization in mlr3, which are discussed in Section 10.1.2.

Reproducibility

Reproducibility is often a concern during parallelization because special Pseudo-
random number generators (PRNGs) may be required (Bengtsson 2020). However,
future ensures that all workers will receive the same PRNG streams, independent of
the number of workers (Bengtsson 2020). Therefore, mlr3 experiments will be repro-
ducible as long as you use set.seed at the start of your scripts (with the PRNG of
your choice).

https://www.rdocumentation.org/packages/batchtools/topics/chunk
https://mlr3misc.mlr-org.com
https://mlr3misc.mlr-org.com/reference/chunk.html
https://mlr3misc.mlr-org.com/reference/chunk_vector.html
https://cran.r-project.org/package=future
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10.1.1 Parallelization of Learners
At the lowest level, external code can be parallelized if available in underlying implementa-
tions. For example, while fitting a single decision tree, each split that divides the data into
two disjoint partitions requires a search for the best cut point on all 𝑝 features. Instead of
iterating over all features sequentially, the search can be broken down into 𝑝 threads, each
searching for the best cut point on a single feature. These threads can then be scheduled de-
pending on available CPU cores, as there is no need for communication between the threads.
After all the threads have finished, the results are collected and merged before terminating
the threads. The 𝑝 best-cut points per feature are collected and aggregated to the single
best-cut point across all features by iterating over the 𝑝 results sequentially.

GPU Computation

Parallelization on GPUs is not covered in this book. mlr3 only distributes the fitting
of multiple learners, e.g., during resampling, benchmarking, or tuning. On this rather
abstract level, GPU parallelization does not work efficiently. However, some learning
procedures can be compiled against CUDA/OpenCL to utilize the GPU while fitting
a single model. We refer to the respective documentation of the learner’s implemen-
tation, e.g., https://xgboost.readthedocs.io/en/stable/gpu/ for XGBoost.

Threading is implemented in the compiled code of the package (e.g., in C or C++), which
means that the R interpreter calls the external code and waits for the results to be returned,
without noticing that the computations are executed in parallel. Therefore, threading can
conflict with certain parallel backends, leading the system to be overutilized in the best-case
scenario, or causing hangs or segfaults in the worst case. For this reason, we introduced the
convention that threading parallelization is turned off by default. Hyperparameters that
control the number of threads are tagged with the label "threads":

lrn_ranger = lrn("classif.ranger")

# show all hyperparameters tagged with "threads"
lrn_ranger$param_set$ids(tags = "threads")

[1] "num.threads"

# The number of threads is initialized to 1
lrn_ranger$param_set$values$num.threads

[1] 1

To enable the parallelization for this learner, mlr3 provides the helper function
set_threads(), which automatically adjusts the hyperparameters associated with builtin
learner parallelization:

# use four CPUs
set_threads(lrn_ranger, n = 4)

<LearnerClassifRanger:classif.ranger>: Random Forest
* Model: -
* Parameters: num.threads=4

https://xgboost.readthedocs.io/en/stable/gpu/
https://mlr3.mlr-org.com/reference/set_threads.html
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* Packages: mlr3, mlr3learners, ranger
* Predict Types: [response], prob
* Feature Types: logical, integer, numeric, character, factor,
ordered

* Properties: hotstart_backward, importance, missings,
multiclass, oob_error, twoclass, weights

If we did not specify an argument for the n parameter then the default is a heuristic
to detect the correct number using availableCores(). This heuristic is not always ideal
(interested readers might want to look up “Amdahl’s Law”) and utilizing all available cores
is occasionally counterproductive and can slow down overall runtime (Bengtsson 2022),
moreover using all cores is not ideal if:

• You want to simultaneously use your system for other purposes.
• You are on a multi-user system and want to spare some resources for other users.
• You have linked R to a threaded BLAS implementation like OpenBLAS and your learners

make heavy use of linear algebra.

# auto-detect cores on the local machine
set_threads(lrn_ranger)

<LearnerClassifRanger:classif.ranger>: Random Forest
* Model: -
* Parameters: num.threads=4
* Packages: mlr3, mlr3learners, ranger
* Predict Types: [response], prob
* Feature Types: logical, integer, numeric, character, factor,
ordered

* Properties: hotstart_backward, importance, missings,
multiclass, oob_error, twoclass, weights

To control how many cores are set, we recommend manually setting the number of CPUs
in your system’s .Rprofile file:

options(mc.cores = 4)

There are also other approaches for parallelization of learners, e.g. by directly supporting
one specific parallelization backend or a parallelization framework like foreach. If this is
supported, parallelization must be explicitly activated, e.g. by setting a hyperparameter. If
you need to parallelize on the learner level because a single model fit takes too much time,
and you only fit a few of these models, consult the documentation of the respective learner.
In many scenarios, it makes more sense to parallelize on a different level like resampling or
benchmarking which is covered in the following subsections.

10.1.2 Parallelization of Resamplings and Benchmarks
In addition to parallel learners, most machine learning experiments can be easily parallelized
during resampling. By definition, resampling is performed by aggregating over independent
repetitions of multiple train-test splits.

mlr3 makes use of future to enable parallelization over resampling iterations using the
parallel backend, which can be configured by the user via the plan() function.

https://www.rdocumentation.org/packages/parallelly/topics/availableCores
https://cran.r-project.org/package=foreach
https://cran.r-project.org/package=future
https://www.rdocumentation.org/packages/future/topics/plan
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By example, we will look at parallelizing three-fold CV for a decision tree on the sonar task
(Figure 10.1). We use the multisession plan (which internally uses socket clusters from
the parallel package) that should work on all operating systems.

library(future)

# select the multisession backend to use
future::plan("multisession")

# run our experiment
tsk_sonar = tsk("sonar")
lrn_rpart = lrn("classif.rpart")
rsmp_cv3 = rsmp("cv", folds = 3)
system.time({resample(tsk_sonar, lrn_rpart, rsmp_cv3)})

user system elapsed
0.137 0.009 0.949

By default, all CPUs of your machine are used unless you specify the argument workers in
future::plan() (see the previous section for issues that this might cause). In contrast to
threads, the technical overhead for starting workers, communicating objects, sending back
results, and shutting down the workers is quite large for the "multisession" backend.

The multicore backend comes with more overhead than threading, but considerably less
overhead than "multisession", as the "multicore" backend only copies R objects when
modified (‘copy-on-write’), whereas objects are always copied to the respective session before
any computation for "multisession". The "multicore" backend has the major disadvan-
tage that it is not supported on Windows systems - for this reason, we will stick with the
"multisession" backend for all examples here.

In general, it is advised to only consider parallelization for resamplings where each iteration
runs at least a few seconds. There are two mlr3 options to control the execution and
granularity:

• If mlr3.exec_random is set to TRUE (default), the order of jobs is randomized in resam-
plings and benchmarks. This can help if you run a benchmark or tuning with heterogeneous
runtimes.

• Option mlr3.exec_chunk_size can be used to control how many jobs are mapped to a
single future and defaults to 1. The value of this option is passed to future_mapply()
and future.scheduling is constantly set to TRUE.

Tuning the chunk size can help in some rare cases to mitigate the parallelization overhead
but is unlikely to be useful in larger problems or longer runtimes.

Benchmarks can be seen as a collection of multiple independent resamplings where a com-
bination of a task, a learner, and a resampling strategy defines one resampling to perform.
In pseudo-code, the calculation can be written as

foreach combination of (task, learner, resampling strategy) {
foreach resampling iteration {

execute(resampling, j)
}

}

https://www.rdocumentation.org/packages/future/topics/multisession
https://www.rdocumentation.org/packages/future/topics/multicore
https://www.rdocumentation.org/packages/future.apply/topics/future_mapply
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Figure 10.1: Parallelization of a resampling using three-fold CV. The main process calls the
resample() function, which starts the parallelization process and the computational task
is split into three parts for three-fold CV. The folds are passed to three workers, each fitting
a model on the respective subset of the task and predicting on the left-out observations.
The predictions (and trained models) are communicated back to the main process which
combines them into a ResampleResult.

Therefore we could either:

1. Parallelize over all resamplings and execute each resampling sequentially (paral-
lelize outer loop); or

2. Iterate over all resamplings and execute each resampling in parallel (parallelize
inner loop).

mlr3 simplifies this decision for you by flattening all experiments to the same level, i.e.,
benchmark() iterates over the elements of the Cartesian product of the iterations of the
outer and inner loops. Therefore, there is no need to decide whether you want to paral-
lelize the tuning or the resampling, you always parallelize both. This approach makes the
computation fine-grained and allows the future backend to group the jobs into chunks of
suitable size (depending on the number of workers), it also makes the procedure identical
to parallelizing resampling:

# simple benchmark design
design = benchmark_grid(tsks(c("sonar", "penguins")),
lrns(c("classif.featureless", "classif.rpart")), rsmp_cv3)

# enable parallelization
future::plan("multisession")

# run benchmark in parallel
bmr = benchmark(design)

See Section 11.2 for larger benchmark experiments that may have a cumulative runtime of
weeks, months or even years.

https://mlr3.mlr-org.com/reference/benchmark.html
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10.1.3 Parallelization of Tuning
Tuning is usually an iterative procedure, consisting of steps that are themselves embarrass-
ingly parallel. In each iteration, a tuner proposes a batch of hyperparameter configurations
(which could be of size 1), which can then be evaluated in parallel. After each iteration, most
tuners adapt themselves in some way based on the obtained performance values. Random
and grid search are exceptions as they do not choose configurations based on past results,
instead, for these tuners, all evaluations are independent and can, in principle, be fully
parallelized.

Tuning is implemented in mlr3 as iterative benchmarks. The Tuner proposes a batch of
learners, each with a different configuration in its $param_set$values, where the size of
the batch can usually be controlled with the batch_size configuration parameter. This
batch is passed to benchmark() with the resampling strategy of the tuning instance.

Since each call to benchmark() depends on previous results, it is generally not possible
to parallelize tuning at a higher “level” than individual benchmarks. Instead, the individ-
ual benchmark() evaluations are parallelized by mlr3 as if they were experiments without
tuning. This means that the individual resampling iterations of each evaluated configura-
tion are all parallelized at the same time. To ensure full parallelization, make sure that
the batch_size multiplied by the number of resampling iterations is at least equal to the
number of available workers. If you expect homogeneous runtimes, i.e., you are tuning over
a single learner or pipeline without any hyperparameters with a large influence on the run-
time, aim for a multiple of the number of workers. In general, larger batches allow for more
parallelization, while smaller batches imply a more frequent evaluation of the termination
criteria. Independently of whether you use parallelization, the termination criteria are only
checked between evaluations of batches.

The following code shows a parallelized execution of random search with the termination
criterion set to 20 iterations and a moderate batch size, where 36 resampling splits – 12
configurations of three splits each – are evaluated in parallel on four workers. The batch
size, set to a multiple of the number of workers, ensures that available resources are used
efficiently. However, note that the tuning only terminates after a multiple of the given batch
size, in this case after 24 evaluations.

future::plan("multisession", workers = 4)

instance = tune(
tnr("random_search", batch_size = 12),
tsk("penguins"),
lrn("classif.rpart", minsplit = to_tune(2, 128)),
rsmp("cv", folds = 3),
term_evals = 20

)

instance$archive$n_evals

[1] 24

In this example, we could have increased the batch size to 20 to make use of available
resources in the most efficient way while stopping exactly at the number of evaluations,
however this does not generalize to other termination criteria where we do not know the
number of evaluations in advance. For example, if we used trm("perf_reached") with a

https://mlr3tuning.mlr-org.com/reference/Tuner.html
https://mlr3.mlr-org.com/reference/benchmark.html
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batch size of 12, then if the first configuration of the batch yielded better performance than
the given threshold, the remaining 11 configurations would still be unnecessarily evaluated.

10.1.4 Nested Resampling Parallelization
Nested resampling can conceptually be parallelized at three different levels, each correspond-
ing to jobs of different granularity:

1. The parallelization of the outer resampling. A job is then the tuning of a learner
on the respective training set of the outer resampling splits.

2. The parallel evaluation of the batch of hyperparameter configurations proposed
in one tuning iteration. A job is then, for example, the cross-validation of such a
configuration.

3. The parallelization of the inner resampling in tuning. A job is then a train-predict-
score step of a single configuration.

This is demonstrated in the pseudocode below, which is a simplified form of Algorithm 3
from Bischl et al. (2023):

# outer resampling, level 1:
for (i in seq_len(n_outer_splits)) {
# tuning instance, in this example mainly represents the archive
tuning_inst = ti(...)
inner_task = get_training_task(task, outer_splits[[i]])
# tuning loop, the details of which depend on the tuner being used
# This does not correspond to a level:
while (!tuning_inst$is_terminated) {

proposed_points = propose_points(tuning_inst$archive, batch_size)
# Evaluation of configurations, level 2:
for (hp_configuration in proposed_points) {
split_performances = numeric()
# Inner resampling, level 3:
for (j in seq_len(n_inner_splits)) {
split_performances[j] = evaluate_performance(
learner, hp_configuration, inner_task, inner_splits[[j]]

)
}
performance = aggregate(split_performances)
update_archive(tuning_inst$archive, configuration, performance)

}
}
evaluate_performance(

learner, tuning_inst$result, task, outer_splits[[i]]
)

}

This algorithm is implemented in mlr3 in a slightly more efficient manner. At the sec-
ond level (the evaluation of hyperparameter configurations), it exploits the functionality of
benchmark(): a Learner object is created for each proposed hyperparameter configuration
and all learners are resampled in a benchmark experiment in the innermost for-loop, effec-
tively executing the second level along with the third level on a finer granularity (number
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of proposed points times number of inner resampling iterations). Hence, when parallelizing
nested resampling in mlr3, the user only has to choose between two options: parallelizing
the outer resampling or the inner benchmarking.

By example, let us tune the minsplit argument of a classification tree using an AutoTuner
(Section 4.2) and random search with only two iterations. Note that this is a didactic
example to illustrate the interplay of the different parallelization levels and not a realistic
setup. We use holdout for inner resampling and set the batch_size to 2, which yields
two independent iterations in the inner benchmark experiment. A five-fold CV is used
for our outer resampling. For the sake of simplicity, we will also ignore the final model
fit the AutoTuner performs after tuning. Below, we run the example sequentially without
parallelization:

library(mlr3tuning)
# reset to default sequential plan
future::plan("sequential")

lrn_rpart = lrn("classif.rpart",
minsplit = to_tune(2, 128))

lrn_rpart_tuned = auto_tuner(tnr("random_search", batch_size = 2),
lrn_rpart, rsmp("holdout"), msr("classif.ce"), 2)

rr = resample(tsk("penguins"), lrn_rpart_tuned, rsmp("cv", folds = 5))

We can now either opt to parallelize the outer CV or the inner benchmarking. Let us assume
we have a single CPU with four cores (C1 - C4) available and each inner holdout evaluation
during tuning takes four seconds. If we parallelize the outer five-fold CV (Figure 10.2), each
of the four cores would run one outer resampling first, the computation of the fifth iteration
has to wait as there are no more available cores.

# Parallelize outer loop
future::plan(list("multisession", "sequential"))

# Alternative: skip specification of 2nd level, since future
# sets all levels after the first to "sequential" by default
future::plan("multisession")

This approach is illustrated in Figure 10.2. Each of the four workers starts with the compu-
tation of a different inner benchmark, each of which runs sequentially and therefore takes
eight seconds on one worker. As there are more jobs than workers, the remaining fifth it-
eration of the outer resampling is queued on C1 after the first four iterations are finished
after eight seconds. During the computation of the fifth outer resampling iteration, only C1
is busy, the other three cores are idle.

In contrast, if we parallelize the inner benchmark (Figure 10.3) then the outer resampling
runs sequentially: the five inner benchmarks are scheduled one after the other, each of which
runs its two holdout evaluations in parallel on two cores; meanwhile, C3 and C4 are idle.

https://mlr3tuning.mlr-org.com/reference/AutoTuner.html
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# Parallelize inner loop
future::plan(list("sequential", "multisession"))

Figure 10.2: CPU utilization for four CPUs while parallelizing the outer five-fold CV with
a sequential two-fold CV inside. Jobs are labeled as [iteration outer]-[iteration inner].

In this example, both possibilities for parallelization are not exploiting the full potential
of the four cores. With parallelization of the outer loop, all results are computed after 16
seconds, if we parallelize the inner loop we obtain them after 20 seconds, and in both cases
some CPU cores remain idle for at least some of the time.

mlr3 and future make it possible to enable parallelization for both loops for nested paral-
lelization, even on different parallelization backends, which can be useful in some distributed
computing setups. Note that the detection of available cores does not work for such a nested
parallelization and the number of workers must be manually set instead:

# Runs both loops in parallel
future::plan(list(
tweak("multisession", workers = 2),
tweak("multisession", workers = 2)

))

This example would run on up to four cores on the local machine: first, two new sessions
would be spawned for the outer loop. Both new sessions then spawn two additional sessions
each to evaluate the inner benchmark. Although two cores are still idle when the fifth outer
resampling iteration runs, this approach reduces the total runtime to 12 seconds, which is
optimal in this example.

10.1.5 Parallelization of Predictions
Finally, predictions from a single learner can be parallelized as the predictions of multiple
observations are independent. For most learners, training is the bottleneck and parallelizing
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Figure 10.3: CPU utilization for four cores while parallelizing the inner benchmarking (con-
sisting of two holdout evaluations) with a sequential five-fold CV outside. Jobs are labeled
as [iteration outer]-[iteration inner].

the prediction is not a worthwhile endeavor, but there can be exceptions, e.g., if your test
dataset is very large.

To predict in parallel, the test data is first split into multiple groups and the predict method
of the learner is applied to each group in parallel using an active backend configured via
plan(). The resulting predictions are then combined internally in a second step. To avoid
predicting in parallel accidentally, parallel predictions must be enabled in the learner via
the parallel_predict field:

# train random forest on sonar task
tsk_sonar = tsk("sonar")
lrn_rpart = lrn("classif.rpart")
lrn_rpart$train(tsk_sonar)

# set up parallel predict on four workers
future::plan("multisession", workers = 4)
lrn_rpart$parallel_predict = TRUE

# predict
prediction = lrn_rpart$predict(tsk_sonar)

10.2 Error Handling
In large experiments, it is not uncommon that a model fit or prediction fails with an error.
This is because the algorithms have to process arbitrary data, and not all eventualities can
always be handled. While we try to identify obvious problems before execution, such as

https://www.rdocumentation.org/packages/future/topics/plan
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when missing values occur for a learner that cannot handle them, other problems are far
more complex to detect. Examples include numerical problems that may cause issues in
training (e.g., due to lack of convergence), or new levels of categorical variables appearing
in the prediction step. Different learners behave quite differently when encountering such
problems: some models signal a warning during the training step that they failed to fit
but return a baseline model, while other models stop the execution. During prediction,
some learners error and refuse to predict the response for observations they cannot handle,
while others may predict NA. In this section, we will discuss how to prevent these errors
from causing the program to stop when we do not want it to (e.g., during a benchmark
experiment).

For illustration (and internal testing) of error handling, mlr3 ships with
lrn("classif.debug") and lrn("regr.debug"):

tsk_penguins = tsk("penguins")
lrn_debug = lrn("classif.debug")
lrn_debug

<LearnerClassifDebug:classif.debug>: Debug Learner for Classification
* Model: -
* Parameters: list()
* Validate: NULL
* Packages: mlr3
* Predict Types: [response], prob
* Feature Types: logical, integer, numeric, character, factor,
ordered

* Properties: hotstart_forward, internal_tuning, marshal,
missings, multiclass, twoclass, validation

This learner lets us simulate problems that are frequently encountered in ML. It can be
configured to stochastically trigger warnings, errors, and even segfaults, during training or
prediction.

With the learner’s default settings, the learner will remember a random label and constantly
predict this label without signaling any conditions. In the following code we tell the learner
to signal an error during the training step:

# set probability to signal an error to `1`
lrn_debug$param_set$values$error_train = 1
lrn_debug$train(tsk_penguins)

Error in .__LearnerClassifDebug__.train(self = self, private = private, : Error from classif.debug->train()

Now we can look at how to deal with errors during mlr3 experiments.

10.2.1 Encapsulation
Encapsulation ensures that signaled conditions (e.g., messages, warnings and errors) are
intercepted and that all conditions raised during the training or prediction step are logged
into the learner without interrupting the program flow. This means that models can be used
for fitting and predicting and any conditions can be analyzed post hoc. However, the result
of the experiment will be a missing model and/or predictions, depending on where the error
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occurs. In Section 10.2.2, we will discuss fallback learners to replace missing models and/or
predictions.

Each Learner has the method $encapsulate()$encapsu-
late()

to control how the train or predict steps are
wrapped. The first way to encapsulate the execution is provided by the package evaluate,
which evaluates R expressions and captures and tracks conditions (outputs, messages, warn-
ings or errors) without letting them stop the process (see documentation of encapsulate()
for full details):

# trigger warning and error in training
lrn_debug = lrn("classif.debug", warning_train = 1, error_train = 1)

# enable encapsulation for train() and predict()
lrn_debug$encapsulate("evaluate", fallback = lrn("classif.featureless"))
lrn_debug$train(tsk_penguins)

WARN [10:07:27.015] [mlr3] train: Warning from classif.debug->train()
ERROR [10:07:27.039] [mlr3] train: Error from classif.debug->train()

Note that encapsulation captures all output written to the standard output (stdout) and
standard error (stderr) streams and stores them in the learner’s log. However, in some
computational setups, the calling process needs to operate on the log output, such as the
batchtools package in Chapter 11. In this case, use the encapsulation method "try"
instead, which catches signaled conditions but does not suppress the output.

After training the learner, one can access the log via the fields log, warnings and errors:

lrn_debug$log

stage class msg
1: train warning Warning from classif.debug->train()
2: train error Error from classif.debug->train()

lrn_debug$warnings

[1] "Warning from classif.debug->train()"

lrn_debug$errors

[1] "Error from classif.debug->train()"

Another encapsulation method is implemented in the callr package. In contrast to
evaluate, the computation is handled in a separate R process. This guards the calling
session against segmentation faults which otherwise would tear down the complete main R
session (if we demonstrate that here we would break our book). On the downside, starting
new processes comes with comparably more computational overhead.

lrn_debug$encapsulate("callr", fallback = lrn("classif.featureless"))
# set segfault_train and remove warning_train and error_train
lrn_debug$param_set$values = list(segfault_train = 1)
lrn_debug$train(task = tsk_penguins)$errors

https://mlr3.mlr-org.com/reference/Learner.html
https://cran.r-project.org/package=evaluate
https://mlr3misc.mlr-org.com/reference/encapsulate.html
https://cran.r-project.org/package=batchtools
https://cran.r-project.org/package=callr
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ERROR [10:07:28.046] [mlr3] train: callr process exited with status -11

[1] "callr process exited with status -11"

As well as catching errors, we can also set a timeout, in seconds, so that learners do not run
for an indefinite time (e.g., due to failing to converge) but are terminated after a specified
time. This works most reliably when using callr encapsulation, since the evaluate method
is sometimes not able to interrupt a learner if it gets stuck in external compiled code. If
learners are interrupted, then this is logged as an error by the encapsulation process. Again,
the timeout can be set separately for training and prediction:

# near instant timeout for training, no timeout for predict
lrn_debug$timeout = c(train = 1e-5, predict = Inf)
lrn_debug$train(task = tsk_penguins)$errors

ERROR [10:07:28.182] [mlr3] train: reached elapsed time limit

[1] "reached elapsed time limit"

With these methods, we can now catch all conditions and post hoc analyze messages, warn-
ings and errors.

Unfortunately, catching errors and ensuring an upper time limit is only half the battle. If
there are errors during training then we will not have a trained model to query, or if there
are errors during predicting, then we will not have predictions to analyze:

# no saved model as there was an error during training
lrn("classif.debug", error_train = 1)$train(tsk_penguins)$model

Error in .__LearnerClassifDebug__.train(self = self, private = private, : Error from classif.debug->train()

# saved model
lrn_debug = lrn("classif.debug", error_predict = 1)$train(tsk_penguins)
lrn_debug$model

$response
[1] "Chinstrap"

$pid
[1] 2728

$id
[1] "1414bbd2-e965-4f91-94c2-359826900b24"

$random_number
[1] 10557

$iter
[1] 1

attr(,"class")
[1] "classif.debug_model"
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# but no predictions due to an error during predicting
lrn_debug$predict(tsk_penguins)

Error in .__LearnerClassifDebug__.predict(self = self, private = private, : Error from classif.debug->predict()

Missing learners and/or predictions are particularly problematic during automated processes
such as resampling, benchmarking, or tuning (Section 5.1.1), as results cannot be aggregated
properly across iterations. In the next section, we will look at fallback learners that impute
missing models and predictions.

10.2.2 Fallback Learners
Say an error has occurred when training a model in one or more iterations during resampling,
then there are three methods to proceed with our experiment:

1. Ignore iterations with failures – This might be the most frequent approach in
practice, however, it is not statistically sound. Say we are trying to evaluate the
performance of a model. This model might error if in some resampling splits,
there are factor levels during predicting that were not seen during training, thus
leading to the model being unable to handle these and erroring. If we discarded
failed iterations, our model would appear to perform well despite it failing to
make predictions for an entire class of features.

2. Penalize failing learners – Instead of ignoring failed iterations, we could impute
the worst possible score (as defined by a given Measure) and thereby heavily
penalize the learner for failing. However, this will often be too harsh for many
problems, and for some measures, there is no reasonable value to impute.

3. Train and predict with a fallback learnerFallback
Learner

– Instead of imputing with the worst
possible score, we could train a baseline learner and make predictions from this
model.

We strongly recommend the final option, which is statistically sound and can
be easily used in any practical experiment. mlr3 includes two baseline learners:
lrn("classif.featureless"), which, in its default configuration, always predicts the ma-
jority class, and lrn("regr.featureless"), which predicts the average response by default.

To make this procedure convenient during resampling and benchmarking, we support fitting
a baseline (though in theory you could use any Learner) as a fallback learner by passing a
Learner to $encapsulate()$encapsu-

late()
. In the next example, we add a classification baseline to our

debug learner, so that when the debug learner errors, mlr3 falls back to the predictions of
the featureless learner internally.

lrn_debug = lrn("classif.debug", error_train = 1)
lrn_debug$encapsulate("evaluate", fallback = lrn("classif.featureless"))

lrn_debug$train(tsk_penguins)

ERROR [10:07:28.326] [mlr3] train: Error from classif.debug->train()

lrn_debug

<LearnerClassifDebug:classif.debug>: Debug Learner for Classification

https://mlr3.mlr-org.com/reference/Measure.html
https://mlr3.mlr-org.com/reference/Learner.html
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* Model: -
* Parameters: error_train=1
* Validate: NULL
* Packages: mlr3
* Predict Types: [response], prob
* Feature Types: logical, integer, numeric, character, factor,
ordered

* Properties: hotstart_forward, internal_tuning, marshal,
missings, multiclass, twoclass, validation

* Errors: Error from classif.debug->train()

The learner’s log contains the captured error, and although no model is stored as the error
was in training, we can still obtain predictions from our fallback:

lrn_debug$log

stage class msg
1: train error Error from classif.debug->train()

lrn_debug$model

NULL

prediction = lrn_debug$predict(tsk_penguins)
prediction$score()

classif.ce
0.5581

In the following snippet, we compare the debug learner with a simple classification tree. We
re-parametrize the debug learner to fail in roughly 50% of the resampling iterations during
the training step:

lrn_debug = lrn("classif.debug", error_train = 0.5)
lrn_debug$encapsulate("evaluate", fallback = lrn("classif.featureless"))

aggr = benchmark(benchmark_grid(
tsk_penguins,
list(lrn_debug, lrn("classif.rpart")),
rsmp("cv", folds = 20)))$aggregate(conditions = TRUE)

ERROR [10:07:28.866] [mlr3] train: Error from classif.debug->train()
ERROR [10:07:28.983] [mlr3] train: Error from classif.debug->train()
ERROR [10:07:29.095] [mlr3] train: Error from classif.debug->train()
ERROR [10:07:29.109] [mlr3] train: Error from classif.debug->train()
ERROR [10:07:29.268] [mlr3] train: Error from classif.debug->train()
ERROR [10:07:29.420] [mlr3] train: Error from classif.debug->train()
ERROR [10:07:29.563] [mlr3] train: Error from classif.debug->train()
ERROR [10:07:29.761] [mlr3] train: Error from classif.debug->train()
ERROR [10:07:30.176] [mlr3] train: Error from classif.debug->train()
ERROR [10:07:30.267] [mlr3] train: Error from classif.debug->train()
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ERROR [10:07:30.765] [mlr3] train: Error from classif.debug->train()

aggr[, .(learner_id, warnings, errors, classif.ce)]

learner_id warnings errors classif.ce
1: classif.debug 0 11 0.59771
2: classif.rpart 0 0 0.05245

Even though the debug learner occasionally failed to provide predictions, we still obtained a
statistically sound aggregated performance value which we can compare to the aggregated
performance of the classification tree. It is also possible to split the benchmark up into
separate ResampleResult objects which sometimes helps to get more context. E.g., if we
only want to have a closer look into the debug learner, we can extract the errors from the
corresponding resample results:

rr = aggr[learner_id == "classif.debug"]$resample_result[[1L]]
rr$errors[1:2]

iteration msg
1: 2 Error from classif.debug->train()
2: 3 Error from classif.debug->train()

In summary, combining encapsulation and fallback learners makes it possible to benchmark
and tune unreliable or unstable learning algorithms in a convenient and statistically sound
fashion.

10.3 Logging
mlr3 uses the lgr package to control the verbosity of the output, i.e., to decide how much
output is shown when mlr3 operations are run, from suppression of all non-critical messages
to detailed messaging for debugging. In this section, we will cover how to change logging
levels, redirect output, and finally change the timing of logging feedback.

mlr3 uses the following verbosity levels from lgr:

• "warn" – Only non-breaking warnings are logged
• "info" – Information such as model runtimes are logged, as well as warnings
• "debug" – Detailed messaging for debugging, as well as information and warnings

The default log level in mlr3 is "info", this means that messages are only displayed for
messages that are informative or worse, i.e., "info" and "warn".

To change the logging threshold you need to retrieve the R6 logger object from lgr, and then
call $set_threshold(), for example, to lower the logging threshold to enable debugging
messaging we would change the threshold to "debug":

lgr::get_logger("mlr3")$set_threshold("debug")

Or to suppress all messaging except warnings:

https://mlr3.mlr-org.com/reference/ResampleResult.html
https://cran.r-project.org/package=lgr
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lgr::get_logger("mlr3")$set_threshold("warn")

lgr comes with a global option called "lgr.default_threshold" which can be set via
options() to make your choice permanent across sessions (note this will affect all packages
using lgr), e.g., options(lgr.default_threshold = "info").

The packages in mlr3 that make use of optimization, i.e., mlr3tuning or mlr3fselect, use
the logger of their base package bbotk. This means you could disable “info”-logging from
the mlr3 logger, but keep the output from mlr3tuning:

lgr::get_logger("mlr3")$set_threshold("warn")
lgr::get_logger("bbotk")$set_threshold("info")

By default, output from lgr is printed in the console, however, you could choose to redirect
this to a file in various formats, for example to a JSON file:

tf = tempfile("mlr3log_", fileext = ".json")

# get the logger as R6 object
logger = lgr::get_logger("mlr3")

# add Json appender
logger$add_appender(lgr::AppenderJson$new(tf), name = "json")

# signal a warning
logger$warn("this is a warning from mlr3")

WARN [10:07:33.740] [mlr3] this is a warning from mlr3

# print the contents of the file (splitting over two lines)
x = readLines(tf)
cat(paste0(substr(x, 1, 71), "\n", substr(x, 72, nchar(x))))

{"level":300,"timestamp":"2025-06-18 10:07:33","logger":"mlr3","caller"
:"eval","msg":"[mlr3] this is a warning from mlr3"}

# remove the appender again
logger$remove_appender("json")

See the vignettes in the lgr for more comprehensive examples.

When using parallelization and/or encapsulation, logs may be delayed, out of order, or, in
case of some errors, not present at all. When it is necessary to have immediate access to
log messages, e.g., when debugging, one may choose to disable future and encapsulation.
To enable ‘debug mode’, set options(mlr3.debug = TRUE) and ensure the $encapsulate
slot of learners is set to "none" (default) or "evaluate". Debug mode should only be
enabled during debugging and not in production use as it disables parallelization and leads
to unexpected RNG behavior that prevents reproducibility.

https://mlr3tuning.mlr-org.com
https://mlr3fselect.mlr-org.com
https://bbotk.mlr-org.com
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10.4 Data Backends
Task objects store their data in an abstract data object, the DataBackend. A data backend
provides a unified API to retrieve subsets of the data or query information about it, regard-
less of how the data is stored on the system. The default backend uses data.table via the
DataBackendDataTable class as a very fast and efficient in-memory database.

While storing the task’s data in memory is most efficient for accessing it for model fitting,
there are two major disadvantages:

1. Even if only a small proportion of the data is required, for example when doing
subsampling, the complete dataset sits in, and consumes, memory. This is espe-
cially a problem if you work with large tasks or many tasks simultaneously, e.g.,
for benchmarking.

2. During parallelization (Section 10.1), the complete data needs to be transferred
to the workers which can increase the overhead.

To avoid these drawbacks, especially for larger data, it can be necessary to interface out-
of-memory data to reduce the memory requirements. This way, only the part of the data
which is currently required by the learners will be placed in the main memory to operate
on. There are multiple options to handle this:

1. DataBackendDplyr, which interfaces the R package dbplyr, extending dplyr to
work on many popular SQL databases like MariaDB, PostgresSQL, or SQLite.

2. DataBackendDuckDB for the DuckDB database connected via duckdb, which is a
fast, zero-configuration alternative to SQLite.

3. DataBackendDuckDB for Parquet files. This means the data does not need to be
converted to DuckDB’s native storage format and instead you can work directly on
directories containing one or multiple files stored in the popular Parquet format.

In the following, we will show how to work with each of these choices using mlr3db.

10.4.1 Databases with DataBackendDplyr
To demonstrate DataBackendDplyr we use the (pretty big) NYC flights dataset
from the nycflights13 package and move it into a SQLite database. Although
as_sqlite_backend() provides a convenient function to perform this step, we construct
the database manually here.

# load data
requireNamespace("DBI")
requireNamespace("RSQLite")
requireNamespace("nycflights13")
data("flights", package = "nycflights13")
dim(flights)

[1] 336776 19

https://mlr3.mlr-org.com/reference/DataBackend.html
https://cran.r-project.org/package=data.table
https://mlr3.mlr-org.com/reference/DataBackendDataTable.html
https://mlr3db.mlr-org.com/reference/DataBackendDplyr.html
https://cran.r-project.org/package=dbplyr
https://cran.r-project.org/package=dplyr
https://mlr3db.mlr-org.com/reference/DataBackendDuckDB.html
https://cran.r-project.org/package=duckdb
https://mlr3db.mlr-org.com/reference/DataBackendDuckDB.html
https://mlr3db.mlr-org.com
https://mlr3db.mlr-org.com/reference/DataBackendDplyr.html
https://cran.r-project.org/package=nycflights13
https://mlr3db.mlr-org.com/reference/as_sqlite_backend.html
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# add column of unique row ids
flights$row_id = seq(nrow(flights))

# create sqlite database in temporary file
path = tempfile("flights", fileext = ".sqlite")
con = DBI::dbConnect(RSQLite::SQLite(), path)
tbl = DBI::dbWriteTable(con, "flights", as.data.frame(flights))
DBI::dbDisconnect(con)

# remove in-memory data
rm(flights)

With the SQLite database stored in file path, we now re-establish a connection and switch
to dplyr/dbplyr for some essential preprocessing.

# establish connection
con = DBI::dbConnect(RSQLite::SQLite(), path)

# select the "flights" table
library(dplyr)
library(dbplyr)
tbl = tbl(con, "flights")

As databases are intended to store large volumes of data, a natural first step is to subset and
filter the data to suitable dimensions. Therefore, we build up an SQL query in a step-wise
fashion using dplyr verbs and:

1. Select a subset of columns to work on;
2. Remove observations where the arrival delay (arr_delay) has a missing value;
3. Filter the data to only use every second row (to reduce example runtime); and
4. Merge factor levels of the feature carrier so infrequent carriers are replaced by

level “other”.

# 1. subset columns
keep = c("row_id", "year", "month", "day", "hour", "minute", "dep_time",
"arr_time", "carrier", "flight", "air_time", "distance", "arr_delay")

tbl = select(tbl, all_of(keep))

# 2. filter by missing
tbl = filter(tbl, !is.na(arr_delay))

# 3. select every other row
tbl = filter(tbl, row_id %% 2 == 0)

# 4. merge infrequent carriers
infrequent = c("OO", "HA", "YV", "F9", "AS", "FL", "VX", "WN")
tbl = mutate(tbl, carrier = case_when(
carrier %in% infrequent ~ "other",
TRUE ~ carrier))

https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=dbplyr
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Having prepared our data, we can now create a DataBackendDplyr and can then query
basic information from our new DataBackend:

library(mlr3db)
backend_flights = as_data_backend(tbl, primary_key = "row_id")
c(nrow = backend_flights$nrow, ncol = backend_flights$ncol)

nrow ncol
163707 13

backend_flights$head()

row_id year month day hour minute dep_time arr_time carrier flight
1: 2 2013 1 1 5 29 533 850 UA 1714
2: 4 2013 1 1 5 45 544 1004 B6 725
3: 6 2013 1 1 5 58 554 740 UA 1696
4: 8 2013 1 1 6 0 557 709 EV 5708
5: 10 2013 1 1 6 0 558 753 AA 301
6: 12 2013 1 1 6 0 558 853 B6 71
3 variable(s) not shown: [air_time, distance, arr_delay]

Note that the DataBackendDplyr can only operate on the data we provided, so does not
‘know’ about the rows and columns we already filtered out (this is in contrast to using
$filter and $subset as in Section 2.1.3, which only remove row or column roles and not
the rows/columns themselves).

With a backend constructed, we can now use the standard mlr3 API:

tsk_flights = as_task_regr(backend_flights, id = "flights_sqlite",
target = "arr_delay")

rsmp_sub002 = rsmp("subsampling", ratio = 0.02, repeats = 3)

Above we created a regression task by passing a backend as the first argument and then
created a resampling strategy where we will subsample 2% of the observations three times.
In each resampling iteration, only the required subset of the data is queried from the SQLite
database and passed to our learner:

rr = resample(tsk_flights, lrn("regr.rpart"), rsmp_sub002)

Warning in warn_deprecated("DataBackend$data_formats"):
DataBackend$data_formats is deprecated and will be removed in the
future.
Warning in warn_deprecated("DataBackend$data_formats"):
DataBackend$data_formats is deprecated and will be removed in the
future.
Warning in warn_deprecated("DataBackend$data_formats"):
DataBackend$data_formats is deprecated and will be removed in the
future.

https://mlr3db.mlr-org.com/reference/DataBackendDplyr.html
https://mlr3.mlr-org.com/reference/DataBackend.html
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measures = msrs(c("regr.rmse", "time_train", "time_predict"))
rr$aggregate(measures)

regr.rmse time_train time_predict
36.086 1.267 15.622

As we have finished our experiment we can now close our connection, which we can do by
removing the tbl object referencing the connection and then closing it.

rm(tbl)
DBI::dbDisconnect(con)

10.4.2 Parquet Files with DataBackendDuckDB
DuckDB databases provide a modern alternative to SQLite, tailored to the needs of ML.
Parquet is a popular column-oriented data storage format supporting efficient compression,
making it far superior to other popular data exchange formats such as CSV.

Converting a data.frame to DuckDB is possible by passing the data.frame to convert and
the path to store the data to as_duckdb_backend(). By example, below we first query
the location of an example dataset in a Parquet file shipped with mlr3db and then convert
the resulting DataBackendDuckDB object into a classification task, all without loading the
dataset into memory:

path = system.file(file.path("extdata", "spam.parquet"),
package = "mlr3db")

backend = as_duckdb_backend(path)
as_task_classif(backend, target = "type")

<TaskClassif:backend> (4601 x 58)
* Target: type
* Properties: twoclass
* Features (57):
- dbl (57): address, addresses, all, business, capitalAve,

capitalLong, capitalTotal, charDollar, charExclamation,
charHash, charRoundbracket, charSemicolon,
charSquarebracket, conference, credit, cs, data, direct,
edu, email, font, free, george, hp, hpl, internet, lab,
labs, mail, make, meeting, money, num000, num1999, num3d,
num415, num650, num85, num857, order, original, our, over,
parts, people, pm, project, re, receive, remove, report,
table, technology, telnet, will, you, your

Accessing the data internally triggers a query and the required subsets of data are fetched to
be stored in an in-memory data.frame. After the retrieved data is processed, the garbage
collector can release the occupied memory. The backend can also operate on a folder with
multiple parquet files.

https://mlr3db.mlr-org.com/reference/as_duckdb_backend.html
https://mlr3db.mlr-org.com/reference/DataBackendDuckDB.html
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10.5 Extending mlr3 and Defining a New Measure
After getting this far in the book you are well on your way to being an mlr3 expert and
may even want to add more classes to our universe. While many classes could be extended,
all have a similar design interface and so, we will only demonstrate how to create a cus-
tom Measure. If you are interested in implementing new learners, PipeOps, or tuners, then
check out the vignettes in the respective packages: mlr3extralearners, mlr3pipelines, or
mlr3tuning. If you are considering creating a package that adds an entirely new task type
then feel free to contact us for some support via GitHub, email, or Mattermost. This section
assumes good knowledge of R6, see Section 1.5.1 for a brief introduction and references to
further resources.

As an example, let us consider a regression measure that scores a prediction as 1 if the
difference between the true and predicted values is less than one standard deviation of the
truth, or scores the prediction as 0 otherwise. In maths this would be defined as 𝑓(𝑦, ̂𝑦) =
1
𝑛 ∑𝑛

𝑖=1 𝕀(|𝑦𝑖− ̂𝑦𝑖| < 𝜎𝑦), where 𝜎𝑦 is the standard deviation of the truth and 𝕀 is the indicator
function. In code, this measure may be written as:

threshold_acc = function(truth, response) {
mean(ifelse(abs(truth - response) < sd(truth), 1, 0))

}

threshold_acc(c(100, 0, 1), c(1, 11, 6))

[1] 0.6667

By definition of this measure, its values are bounded in [0, 1] where a perfect score of 1 would
mean all predictions are within a standard deviation of the truth, hence for this measure
larger scores are better.

To use this measure in mlr3, we need to create a new R6Class, which will inherit from
Measure and in this case specifically from MeasureRegr. The code for this new measure is
in the snippet below, with an explanation following it. This code chunk can be used as a
template for the majority of performance measures.

MeasureRegrThresholdAcc = R6::R6Class("MeasureRegrThresholdAcc",
inherit = mlr3::MeasureRegr, # regression measure
public = list(

initialize = function() { # initialize class
super$initialize(
id = "thresh_acc", # unique ID
packages = character(), # no package dependencies
properties = character(), # no special properties
predict_type = "response", # measures response prediction
range = c(0, 1), # results in values between (0, 1)
minimize = FALSE # larger values are better

)
}

),

https://mlr3.mlr-org.com/reference/Measure.html
https://mlr3extralearners.mlr-org.com
https://mlr3pipelines.mlr-org.com
https://mlr3tuning.mlr-org.com
https://www.rdocumentation.org/packages/R6/topics/R6Class
https://mlr3.mlr-org.com/reference/MeasureRegr.html
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private = list(
# define score as private method
.score = function(prediction, ...) {
# define loss
threshold_acc = function(truth, response) {
mean(ifelse(abs(truth - response) < sd(truth), 1, 0))

}
# call loss function
threshold_acc(prediction$truth, prediction$response)

}
)

)

1. In the first two lines we name the class, here MeasureRegrThresholdAcc, and
then state this is a regression measure that inherits from MeasureRegr.

2. We initialize the class by stating its unique ID is "thresh_acc", that it does
not require any external packages (packages = character()) and that it has no
special properties (properties = character()).

3. We then pass specific details of the loss function which are: it measures the quality
of a "response" type prediction, its values range between (0, 1), and that the
loss is optimized as its maximum (minimize = FALSE).

4. Finally, we define the score itself as a private method called .score where we
pass the predictions to the function we defined just above.

Sometimes measures require data from the training set, the task, or the learner. These
are usually complex edge-cases examples, so we will not go into detail here, for working
examples we suggest looking at the code for MeasureSurvSongAUC and MeasureSurvAUC.
You can also consult the manual page of the Measure for an overview of other properties
and meta-data that can be specified.

Once you have defined your measure you can load it with the R6 constructor ($new()),
or make it available to be constructed with the msr() sugar function by adding it to the
mlr_measures dictionary:

tsk_mtcars = tsk("mtcars")
split = partition(tsk_mtcars)
lrn_featureless = lrn("regr.featureless")$train(tsk_mtcars, split$train)
prediction = lrn_featureless$predict(tsk_mtcars, split$test)
prediction$score(MeasureRegrThresholdAcc$new())

thresh_acc
0.6364

# or add to dictionary by passing a unique key to the first argument
# and the class to the second
mlr3::mlr_measures$add("regr.thresh_acc", MeasureRegrThresholdAcc)
prediction$score(msr("regr.thresh_acc"))

thresh_acc

https://mlr3proba.mlr-org.com/reference/MeasureSurvSongAUC.html
https://mlr3proba.mlr-org.com/reference/MeasureSurvAUC.html
https://mlr3.mlr-org.com/reference/mlr_measures.html
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0.6364

While we only covered how to create a simple regression measure, the process of adding
other classes to our universe is in essence the same:

1. Find the right class to inherit from
2. Add methods that:

a) Initialize the object with the correct properties ($initialize()).
b) Implement the public and private methods that do the actual computation.

In the above example, this was the private $.score() method.

We are always happy to chat and welcome new contributors, please get in touch if you need
assistance in extending mlr3.

10.6 Conclusion
This chapter covered several advanced topics including parallelization, error handling, log-
ging, working with databases, and extending the mlr3 universe. For simple use cases, you
will probably not need to know each of these topics in detail, however, we do recommend
being familiar at least with error handling and fallback learners, as these are essential to
preventing even simple experiments being interrupted. If you are working with large exper-
iments or datasets, then understanding parallelization, logging, and databases will also be
essential.

We have not covered any of these topics extensively and therefore recommended the following
resources should you want to read more about these areas. If you are interested to learn
more about parallelization in R, we recommend Schmidberger et al. (2009) and Eddelbuettel
(2020). To find out more about logging, have a read of the vignettes in lgr, which cover
everything from logging to JSON files to retrieving logged objects for debugging. For an
overview of available DBMS in R, see the CRAN task view on databases at https://cran.r-
project.org/view=Databases, and in particular the vignettes of the dbplyr package for
DBMS readily available in mlr3.

Table 10.1: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor/Function Fields/Methods
- plan() -
- set_threads() -
- tweak() -
Learner lrn() $encapsulate(); $timeout;

$parallel_predict; $log
Logger get_logger $set_threshold()
DataBackendDplyr as_data_backend -
DataBackendDuckDB as_duckdb_backend -

https://cran.r-project.org/view=Databases
https://cran.r-project.org/view=Databases
https://www.rdocumentation.org/packages/future/topics/plan
https://mlr3.mlr-org.com/reference/set_threads.html
https://www.rdocumentation.org/packages/future/topics/tweak
https://www.rdocumentation.org/packages/lgr/topics/Logger
https://www.rdocumentation.org/packages/lgr/topics/get_logger
https://mlr3db.mlr-org.com/reference/DataBackendDplyr.html
https://mlr3.mlr-org.com/reference/as_data_backend.html
https://mlr3db.mlr-org.com/reference/DataBackendDuckDB.html
https://mlr3db.mlr-org.com/reference/as_duckdb_backend.html
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10.7 Exercises
1. Consider the following example where you resample a learner (debug learner,

sleeps for three seconds during train) on four workers using the multisession
backend:

tsk_penguins = tsk("penguins")
lrn_debug = lrn("classif.debug", sleep_train = function() 3)
rsmp_cv6 = rsmp("cv", folds = 6)

future::plan("multisession", workers = 4)
resample(tsk_penguins, lrn_debug, rsmp_cv6)

(a) Assuming you were running this experiment on a computer with four CPUs, and
that the learner would actually calculate something and not just sleep: Would all
CPUs be busy for the entire time of this calculation?

(b) Prove your point by measuring the elapsed time, e.g., using system.time().
(c) What would you change in the setup and why?

2. Create a new custom binary classification measure which scores (“prob”-type)
predictions. This measure should compute the absolute difference between the
predicted probability for the positive class and a 0-1 encoding of the ground truth
and then average these values across the test set. Test this with classif.log_reg
on tsk(“sonar”).

3. “Tune” the error_train hyperparameter of the classif.debug learner on a
continuous interval from 0 to 1, using a simple classification tree as the fallback
learner and the penguins task. Tune for 50 iterations using random search and 10-
fold cross-validation. Inspect the resulting archive and find out which evaluations
resulted in an error, and which did not. Now do the same in the interval 0.3 to
0.7. Are your results surprising?

https://www.rdocumentation.org/packages/base/topics/system.time
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In machine learning, it is often difficult to evaluate methods using mathematical analysis
alone. Even when formal analyses can be successfully applied, it is often an open question
whether real-world datasets satisfy the necessary assumptions for the theorems to hold. Em-
pirical benchmark experiments evaluate the performance of different algorithms on a wide
range of datasets. These empirical investigations are essential for understanding the capabil-
ities and limitations of existing methods and for developing new and improved approaches.
Trustworthy benchmark experiments are often ‘large-scale’, which means they may make
use of many datasets, measures, and learners. Moreover, datasets must span a wide range
of domains and problem types as conclusions can only be drawn about the kind of datasets
on which the benchmark study was conducted.

Large-scale benchmark experiments consist of three primary steps: sourcing the data for
the experiment, executing the experiment, and analyzing the results; we will discuss each of
these in turn. In Section 11.1 we will begin by discussing mlr3oml, which provides an inter-
face between mlr3 and OpenML (Vanschoren et al. 2013), a popular tool for uploading and
downloading datasets. Increasing the number of datasets leads to ‘large-scale’ experiments
that may require significant computational resources, so in Section 11.2 we will introduce
mlr3batchmark, which connects mlr3 with batchtools (Lang, Bischl, and Surmann 2017),
which provides methods for managing and executing experiments on high-performance com-
puting (HPC) clusters. Finally, in Section 11.3 we will demonstrate how to make use of
mlr3benchmark to formally analyze the results from large-scale benchmark experiments.

Throughout this chapter, we will use the running example of benchmarking a random
forest model against a logistic regression as in Couronné, Probst, and Boulesteix (2018).
We will also assume that you have read Chapter 7 and Chapter 10. We make use of
ppl("robustify") (Section 9.4) for automating common preprocessing steps. We also set a
featureless baseline as a fallback learner (Section 10.2.2) and set "try" as our encapsulation
method (Section 10.2.1), which logs errors/warnings to an external file that can be read by
batchtools (we will return to this in Section 11.2.3).

# featureless baseline
lrn_baseline = lrn("classif.featureless", id = "featureless")
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https://mlr3oml.mlr-org.com
https://mlr3.mlr-org.com
https://mlr3batchmark.mlr-org.com
https://cran.r-project.org/package=batchtools
https://mlr3benchmark.mlr-org.com


238 Large-Scale Benchmarking

# logistic regression pipeline
lrn_lr = lrn("classif.log_reg")
lrn_lr = as_learner(ppl("robustify", learner = lrn_lr) %>>% lrn_lr)
lrn_lr$id = "logreg"
lrn_lr$encapsulate("try", fallback = lrn_baseline)

# random forest pipeline
lrn_rf = lrn("classif.ranger")
lrn_rf = as_learner(ppl("robustify", learner = lrn_rf) %>>% lrn_rf)
lrn_rf$id = "ranger"
lrn_rf$encapsulate("try", fallback = lrn_baseline)

learners = list(lrn_lr, lrn_rf, lrn_baseline)

As a starting example, we will compare our learners across three classification tasks using
accuracy and three-fold CV.

design = benchmark_grid(tsks(c("german_credit", "sonar", "pima")),
learners, rsmp("cv", folds = 10))

bmr = benchmark(design)
bmr$aggregate(msr("classif.acc"))[, .(task_id, learner_id, classif.acc)]

task_id learner_id classif.acc
1: german_credit logreg 0.7460
2: german_credit ranger 0.7630
3: german_credit featureless 0.7000
4: sonar logreg 0.7162
5: sonar ranger 0.8412
6: sonar featureless 0.5329
7: pima logreg 0.7747
8: pima ranger 0.7695
9: pima featureless 0.6511

In this small experiment, random forests appears to outperform the other learners on all
three datasets. However, this analysis is not conclusive as we only considered three tasks,
and the performance differences might not be statistically significant. In the following, we
will introduce some techniques to improve the study.

11.1 Getting Data with OpenML
To draw meaningful conclusions from benchmark experiments, a good choice of datasets
and tasks is essential. OpenMLOpenML is an open-source platform that facilitates the sharing and
dissemination of machine learning research data, algorithms, and experimental results, in a
standardized format enabling consistent cross-study comparison. OpenML’s design ensures
that all data on the platform is ‘FAIR’ (Findability, Accessibility, Interoperability and
Reusability), which ensures the data is easily discoverable and reusable. All entities on the
platform have unique identifiers and standardized (meta)data that can be accessed via a
REST API or the web interface.
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In this section, we will cover some of the main features of OpenML and how to use them
via the mlr3oml interface package. In particular, we will discuss OpenML datasets, tasks,
and task collections, but will not cover algorithms or experiment results here.

11.1.1 Datasets
Finding data from OpenML is possible via the website or its REST API that mlr3oml in-
terfaces. list_oml_data() can be used to filter datasets for specific properties, for example
by number of features, rows, or number of classes in a classification problem:

library(mlr3oml)

odatasets = list_oml_data(
number_features = c(10, 20),
number_instances = c(45000, 50000),
number_classes = 2

)

odatasets[NumberOfFeatures < 16,
c("data_id", "name", "NumberOfFeatures", "NumberOfInstances")]

data_id name NumberOfFeatures
1: 179 adult 15
2: 1590 adult 15
3: 43898 adult 15
4: 45051 adult-test 15
5: 45068 adult 15
---
8: 46553 Loan_Status 14
9: 46554 Loan_Status 14
10: 46563 Loan_Approval_Status_Classification 14
11: 46565 Loan_Approval_Status 14
12: 46910 bank-marketing 14
1 variable(s) not shown: [NumberOfInstances]

Note that list_oml_data() returns a data.table with many more meta-features than
shown here; this table can itself be used to filter further.

We can see that some datasets have duplicated names, which is why each dataset also has a
unique ID. By example, let us consider the ‘adult’ dataset with ID 1590. Metadata for the
dataset is loaded with odt() odt(), which returns an object of class OMLData.

odata = odt(id = 1590)
odata

<OMLData:1590:adult> (48842x15)
* Default target: class

The OMLData object contains metadata about the dataset but importantly does not (yet)
contain the data. This means that information about the dataset can be queried without
having to load the entire data into memory, for example, the license and dimension of the

https://mlr3oml.mlr-org.com
https://mlr3oml.mlr-org.com/reference/list_oml.html
https://mlr3oml.mlr-org.com/reference/odt.html
https://mlr3oml.mlr-org.com/reference/oml_data.html
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data:

odata$license

[1] "Public"

c(nrow = odata$nrow, ncol = odata$ncol)

nrow ncol
48842 15

If we want to work with the actual data, then accessing the $data field will download the
data, import it into R, and then store the data.frame in the OMLData object:

# first 5 rows and columns
odata$data[1:5, 1:5]

age workclass fnlwgt education education.num
1: 25 Private 226802 11th 7
2: 38 Private 89814 HS-grad 9
3: 28 Local-gov 336951 Assoc-acdm 12
4: 44 Private 160323 Some-college 10
5: 18 <NA> 103497 Some-college 10

mlr3oml Cache

After $data has been called the first time, all subsequent calls to $data will be trans-
parently redirected to the in-memory data.frame. Additionally, many objects can be
permanently cached on the local file system by setting the option mlr3oml.cache to
either TRUE or to a specific path to be used as the cache folder.

Data can then be converted into mlr3 backends (see Section 10.4) with the
as_data_backend() function and then into tasks:

backend = as_data_backend(odata)
tsk_adult = as_task_classif(backend, target = "class")
tsk_adult

<TaskClassif:backend> (48842 x 15)
* Target: class
* Properties: twoclass
* Features (14):
- fct (8): education, marital.status, native.country,

occupation, race, relationship, sex, workclass
- int (6): age, capital.gain, capital.loss, education.num,
fnlwgt, hours.per.week

Some datasets on OpenML contain columns that should neither be used as a feature nor a
target. The column names that are usually included as features are accessible through the
field $feature_names, and we assign them to the mlr3 task accordingly. Note that for the

https://mlr3.mlr-org.com/reference/as_data_backend.Matrix.html
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dataset at hand, this would not have been necessary, as all non-target columns are to be
treated as predictors, but we include it for clarity.

tsk_adult$col_roles$feature = odata$feature_names
tsk_adult

<TaskClassif:backend> (48842 x 15)
* Target: class
* Properties: twoclass
* Features (14):
- fct (8): education, marital.status, native.country,

occupation, race, relationship, sex, workclass
- int (6): age, capital.gain, capital.loss, education.num,
fnlwgt, hours.per.week

11.1.2 Task
OpenML tasks are built on top of OpenML datasets and additionally specify the target
variable, the train-test splits to use for resampling, and more. Note that this differs from
mlr3 Task objects, which do not contain information about the resampling procedure. Sim-
ilarly to mlr3, OpenML has different types of tasks, such as regression and classification.
Analogously to filtering datasets, tasks can be filtered with list_oml_tasks(). To find a
task that makes use of the data we have been using, we would pass the data ID to the
data_id argument:

# tasks making use of the adult data
adult_tasks = list_oml_tasks(data_id = 1590)

adult_tasks[task_type == "Supervised Classification", task_id]

[1] 7592 14947 126025 146154 146598 168878 233099 359983 361515
[10] 362136

From these tasks, we randomly select the task with ID 359983. We can load the object using
otsk() otsk(), which returns an OMLTask object.

otask = otsk(id = 359983)
otask

<OMLTask:359983>
* Type: Supervised Classification
* Data: adult (id: 1590; dim: 48842x15)
* Target: class
* Estimation: crossvalidation (id: 1; repeats: 1, folds: 10)

The OMLData object associated with the underlying dataset can be accessed through the
$data field.

otask$data

https://mlr3oml.mlr-org.com/reference/list_oml.html
https://mlr3oml.mlr-org.com/reference/otsk.html
https://mlr3oml.mlr-org.com/reference/oml_task.html
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<OMLData:1590:adult> (48842x15)
* Default target: class

The data splits associated with the estimation procedure are accessible through the field
$task_splits. In mlr3 terms, these are the instantiation of a Resampling on a specific
Task.

otask$task_splits

type rowid repeat. fold
1: TRAIN 32427 0 0
2: TRAIN 13077 0 0
3: TRAIN 15902 0 0
4: TRAIN 17703 0 0
5: TRAIN 35511 0 0
---

488416: TEST 8048 0 9
488417: TEST 12667 0 9
488418: TEST 43944 0 9
488419: TEST 25263 0 9
488420: TEST 43381 0 9

The OpenML task can be converted to both an mlr3::Task and ResamplingCustom instan-
tiated on the task using as_task() and as_resampling(), respectively:

tsk_adult = as_task(otask)
tsk_adult

<TaskClassif:adult> (48842 x 15)
* Target: class
* Properties: twoclass
* Features (14):
- fct (8): education, marital.status, native.country,

occupation, race, relationship, sex, workclass
- int (6): age, capital.gain, capital.loss, education.num,
fnlwgt, hours.per.week

resampling = as_resampling(otask)
resampling

<ResamplingCustom>: Custom Splits
* Iterations: 10
* Instantiated: TRUE
* Parameters: list()

mlr3oml also allows direct construction of mlr3 tasks and resamplings with the standard
tsk() and rsmp() constructors, e.g.:

tsk("oml", task_id = 359983)

<TaskClassif:adult> (48842 x 15)
* Target: class

https://mlr3.mlr-org.com/reference/Resampling.html
https://mlr3.mlr-org.com/reference/Task.html
https://mlr3.mlr-org.com/reference/ResamplingCustom.html
https://mlr3.mlr-org.com/reference/as_task.html
https://mlr3.mlr-org.com/reference/as_resampling.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html
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* Properties: twoclass
* Features (14):
- fct (8): education, marital.status, native.country,

occupation, race, relationship, sex, workclass
- int (6): age, capital.gain, capital.loss, education.num,
fnlwgt, hours.per.week

11.1.3 Task Collection
The OpenML task collection is a container object bundling existing tasks. This allows for
the creation of benchmark suites, which are curated collections of tasks that satisfy certain
quality criteria. Examples include the OpenML CC-18 benchmark suite (Bischl et al. 2021),
the AutoML benchmark (Gijsbers et al. 2022) and the benchmark for tabular deep learning
(Grinsztajn, Oyallon, and Varoquaux 2022). OMLCollection objects are loaded with ocl() ocl(),
by example we will look at CC-18, which has ID 99:

otask_collection = ocl(id = 99)

otask_collection

<OMLCollection: 99> OpenML-CC18 Curated Class[...]
* data: 72
* tasks: 72

The task includes 72 classification tasks on different datasets that can be accessed through
$task_ids:

otask_collection$task_ids[1:5] # first 5 tasks in the collection

[1] 3 6 11 12 14

Task collections can be used to quickly define benchmark experiments in mlr3. To easily
construct all tasks and resamplings from the benchmarking suite, you can use as_tasks()
and as_resamplings() respectively:

tasks = as_tasks(otask_collection)
resamplings = as_resamplings(otask_collection)

Alternatively, if we wanted to filter the collection further, say to a binary classification
experiment with six tasks, we could run list_oml_tasks() with the task IDs from the CC-
18 collection as argument task_id. We can either use the list_oml_tasks() argument to
request the number of classes to be 2, or we can make use of the fact that the result of
list_oml_tasks() is a data.table and subset the resulting table.

binary_cc18 = list_oml_tasks(
limit = 6,
task_id = otask_collection$task_ids,
number_classes = 2

)

https://mlr3oml.mlr-org.com/reference/oml_collection.html
https://mlr3oml.mlr-org.com/reference/ocl.html
https://mlr3.mlr-org.com/reference/as_task.html
https://mlr3.mlr-org.com/reference/as_resampling.html
https://mlr3oml.mlr-org.com/reference/list_oml.html
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We now define the tasks and resamplings which we will use for comparing the logistic
regression with the random forest learner. Note that all resamplings in this collection consist
of exactly 10 iterations.

# load tasks as a list
otasks = lapply(binary_cc18$task_id, otsk)

# convert to mlr3 tasks and resamplings
tasks = as_tasks(otasks)
resamplings = as_resamplings(otasks)

To define the design table, we use benchmark_grid() and set paired to TRUE, which is
used in situations where each resampling is instantiated on a corresponding task (therefore
the tasks and resamplings below must have the same length) and each learner should be
evaluated on every resampled task.

large_design = benchmark_grid(tasks, learners, resamplings,
paired = TRUE)

large_design[1:6] # first 6 rows

task learner resampling
1: kr-vs-kp logreg custom
2: kr-vs-kp ranger custom
3: kr-vs-kp featureless custom
4: breast-w logreg custom
5: breast-w ranger custom
6: breast-w featureless custom

Having set up our large experiment, we can now look at how to efficiently carry it out on
a cluster.

11.2 Benchmarking on HPC Clusters
As discussed in Section 10.1, parallelization of benchmark experiments is straightforward as
they are embarrassingly parallel. However, for large experiments, parallelization on a high-
performance computingHigh-

performance
Computing

(HPC) cluster is often preferable. batchtools provides a framework
to simplify running large batches of computational experiments in parallel from R on such
sites. It is highly flexible, making it suitable for a wide range of computational experiments,
including machine learning, optimization, simulation, and more.

"batchtools" backend for future

In Section 10.1.2 we touched upon different parallelization backends. The package
future includes a "batchtools" plan, however, this does not allow the additional
control that comes with working with batchtools directly.

An HPC cluster is a collection of interconnected computers or servers providing computa-
tional power beyond what a single computer can achieve. HPC clusters typically consist of

https://mlr3.mlr-org.com/reference/benchmark_grid.html
https://cran.r-project.org/package=batchtools
https://cran.r-project.org/package=future
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multiple compute nodes, each with multiple CPU/GPU cores, memory, and local storage.
These nodes are usually connected by a high-speed network and network file system which
enables the nodes to communicate and work together on a given task. The most important
difference between HPC clusters and a personal computer (PC), is that the nodes often
cannot be accessed directly, but instead, computational jobs are queued by a scheduling
system such as Slurm (Simple Linux Utility for Resource Management). A scheduling sys-
tem is a software tool that orchestrates the allocation of computing resources to users or
applications on the cluster. It ensures that multiple users and applications can access the
resources of the cluster fairly and efficiently, and also helps to maximize the utilization of
the computing resources.

Figure 11.1 contains a rough sketch of an HPC architecture. Multiple users can log into the
head node (typically via SSH) and add their computational jobs to the queue by sending
a command of the form “execute computation X using resources Y for Z amount of time”.
The scheduling system controls when these computational jobs are executed.

For the rest of this section, we will look at how to use batchtools and mlr3batchmark
for submitting jobs, adapting jobs to clusters, ensuring reproducibility, querying job status,
and debugging failures.

Figure 11.1: Illustration of an HPC cluster architecture.

11.2.1 Experiment Registry Setup
batchtools is built around experiments or ‘jobs’. One replication of a job is defined by
applying a (parameterized) algorithm to a (parameterized) problem. A benchmark experi-
ment in batchtools consists of running many such experiments with different algorithms,
algorithm parameters, problems, and problem parameters. Each such experiment is com-
putationally independent of all other experiments and constitutes the basic level of com-
putation batchtools can parallelize. For this section, we will define a single batchtools
experiment as one resampling iteration of one learner on one task, in Section 11.2.4 we will
look at different ways of defining an experiment.

The first step in running an experiment is to create or load an experiment registry with
makeExperimentRegistry() or loadRegistry() respectively. This constructs the inter-
communication object for all functions in batchtools and corresponds to a folder on the
file system. Among other things, the experiment registry stores the algorithms, problems,

https://mlr3batchmark.mlr-org.com
https://www.rdocumentation.org/packages/batchtools/topics/makeExperimentRegistry
https://www.rdocumentation.org/packages/batchtools/topics/loadRegistry
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and job definitions; log outputs and status of submitted, running, and finished jobs; job
results; and the “cluster function” that defines the interaction with the scheduling system
in a scheduling-software-agnostic way.

Below, we create a registry in a subdirectory of our working directory – on a real cluster,
make sure that this folder is stored on a shared network filesystem, otherwise, the nodes
cannot access it. We also set the registry’s seed to 1 and the packages to "mlr3verse",
which will make these packages available in all our experiments.

library(batchtools)

# create registry
reg = makeExperimentRegistry(
file.dir = "./experiments",
seed = 1,
packages = "mlr3verse"

)

Once the registry has been created, we need to populate it with problems and algorithms to
form the jobs, this is most easily carried out with mlr3batchmark, although finer control is
possible with batchtools and will be explored in Section 11.2.4. batchmark()batchmark() converts mlr3
tasks and resamplings to batchtools problems, and converts mlr3 learners to batchtools
algorithms; jobs are then created for all resampling iterations.

library(mlr3batchmark)
batchmark(large_design, reg = reg)

Now the registry includes six problems, one for each resampled task, and 180 jobs from 3
learners × 6 tasks × 10 resampling iterations. The single algorithm in the registry is because
mlr3batchmark specifies a single algorithm that is parametrized with the learner IDs.

reg

Experiment Registry
Backend : Interactive
File dir : /__w/mlr3book/mlr3book/book/chapters/chapter11/experiments
Work dir : /__w/mlr3book/mlr3book/book/chapters/chapter11
Jobs : 180
Problems : 6
Algorithms: 1
Seed : 1
Writeable : TRUE

By default, the “Interactive” cluster function (see makeClusterFunctionsInteractive())
is used – this is the abstraction for the scheduling system, and “interactive” here means to
not use a real scheduler but instead to use the interactive R session for sequential compu-
tation. getJobTable() can be used to get more detailed information about the jobs. Here,
we only show a few selected columns for readability and unpack the list columns algo.pars
and prob.pars using unwrap().

https://mlr3batchmark.mlr-org.com/reference/batchmark.html
https://www.rdocumentation.org/packages/batchtools/topics/makeClusterFunctionsInteractive
https://www.rdocumentation.org/packages/batchtools/topics/getJobTable
https://www.rdocumentation.org/packages/batchtools/topics/unwrap
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job_table = getJobTable(reg = reg)
job_table = unwrap(job_table)
job_table = job_table[,
.(job.id, learner_id, task_id, resampling_id, repl)

]

job_table

job.id learner_id task_id resampling_id repl
1: 1 logreg kr-vs-kp custom 1
2: 2 logreg kr-vs-kp custom 2
3: 3 logreg kr-vs-kp custom 3
4: 4 logreg kr-vs-kp custom 4
5: 5 logreg kr-vs-kp custom 5
---
176: 176 featureless spambase custom 6
177: 177 featureless spambase custom 7
178: 178 featureless spambase custom 8
179: 179 featureless spambase custom 9
180: 180 featureless spambase custom 10

In this output, we can see how each job is now assigned a unique job.id and that each row
corresponds to a single iteration (column repl) of a resample experiment.

11.2.2 Job Submission
With the experiments defined, we can now submit them to the cluster. However, it is best
practice to first test each algorithm individually using testJob() testJob(). By example, we will only
test the first job (id = 1) and will use an external R session (external = TRUE).

result = testJob(1, external = TRUE, reg = reg)

Once we are confident that the jobs are defined correctly (see Section 11.2.3 for jobs with
errors), we can proceed with their submission, by specifying the resource requirements for
each computational job and then optionally grouping jobs.

Configuration of resources is dependent on the cluster function set in the registry. We will
assume we are working with a Slurm cluster and accordingly initialize the cluster function
with makeClusterFunctionsSlurm() and will make use of the slurm-simple.tml template
file that can be found in a subdirectory of the batchtools package itself (the exact location
can be found by running system.file("templates", package = "batchtools")), or the
batchtools GitHub repository. A template file is a shell script with placeholders filled in
by batchtools and contains the command to start the computation via Rscript or R CMD
batch, as well as comments which serve as annotations for the scheduler, for example, to
communicate resources or paths on the file system.

The exemplary template should work on many Slurm installations out-of-the-box, but you
might have to modify it for your cluster – it can be customized to work with more advanced
configurations.

https://www.rdocumentation.org/packages/batchtools/topics/testJob
https://www.rdocumentation.org/packages/batchtools/topics/makeClusterFunctionsSlurm
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cf = makeClusterFunctionsSlurm(template = "slurm-simple")

To proceed with the examples on a local machine, we recommend setting the cluster function
to a Socket backend with makeClusterFunctionsSocket(). The chosen cluster function can
be saved to the registry by passing it to the $cluster.functions field.

reg$cluster.functions = cf
saveRegistry(reg = reg)

With the registry setup, we can now decide if we want to run the experiments in chunks
(Section 10.1) and then specify the resource requirements for the submitted jobs.

For this example, we will use chunk()chunk() to chunk the jobs such that five iterations of one
resample experiment are run sequentially in one computational job – in practice the optimal
grouping will be highly dependent on your experiment (Section 10.1).

ids = job_table$job.id
chunks = data.table(
job.id = ids, chunk = chunk(ids, chunk.size = 5, shuffle = FALSE)

)
chunks[1:6] # first 6 jobs

job.id chunk
1: 1 1
2: 2 1
3: 3 1
4: 4 1
5: 5 1
6: 6 2

The final step is to decide the resource requirements for each job. The set of resources
depends on your cluster and the corresponding template file. If you are unsure about the re-
source requirements, you can start a subset of jobs with liberal resource constraints, e.g. the
maximum runtime allowed for your computing site. Measured runtimes and memory us-
age can later be queried with getJobTable() and used to better estimate the required
resources for the remaining jobs. In this example we will set the number of CPUs per job
to 1, the walltime (time limit before jobs are stopped by the scheduler) to one hour (3600
seconds), and the RAM limit (memory limit before jobs are stopped by the scheduler) to
8000 megabytes.

resources = list(ncpus = 1, walltime = 3600, memory = 8000)

With all the elements in place, we can now submit our jobs.

submitJobs(ids = chunks, resources = resources, reg = reg)

# wait for all jobs to terminate
waitForJobs(reg = reg)

https://www.rdocumentation.org/packages/batchtools/topics/makeClusterFunctionsSocket
https://www.rdocumentation.org/packages/batchtools/topics/chunk
https://www.rdocumentation.org/packages/batchtools/topics/getJobTable
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Submitting Jobs

A good approach to submit computational jobs is by using a persistent R session (e.g.,
with Terminal Multiplexer (TMUX)) on the head node to continue job submission (or
computation, depending on the cluster functions) in the background.
However, batchtools registries are saved to the file system and therefore persistent
when the R session is terminated. This means that you can also submit jobs from an
interactive R session, terminate the session, and analyze the results later in a new
session.

11.2.3 Job Monitoring, Error Handling, and Result Collection
Once jobs have been submitted, they can then be queried with getStatus() getStatus()to find their
current status and the results (or errors) can be investigated. If you terminated your R
sessions after job submission, you can load the experiment registry with loadRegistry()

loadRegistry()
.

getStatus(reg = reg)

Status for 180 jobs at 2025-06-18 10:13:25:
Submitted : 180 (100.0%)
-- Queued : 0 ( 0.0%)
-- Started : 180 (100.0%)
---- Running : 0 ( 0.0%)
---- Done : 180 (100.0%)
---- Error : 0 ( 0.0%)
---- Expired : 0 ( 0.0%)

To query the ids of jobs in the respective categories, see findJobs() and, e.g.,
findNotSubmitted() or findDone(). In our case, we can see all experiments finished and
none expired (i.e., were removed from the queue without ever starting, Expired : 0) or
crashed (Error : 0). It can still be sensible to use grepLogs() to check the logs for suspi-
cious messages and warnings before proceeding with the analysis of the results.

In any large-scale experiment many things can and will go wrong, for example, the cluster
might have an outage, jobs may run into resource limits or crash, or there could be bugs in
your code. In these situations, it is important to quickly determine what went wrong and
to recompute only the minimal number of required jobs.

To see debugging in practice we will use the debug learner (see Section 10.2) with a 50%
probability of erroring in training. When calling batchmark() again, the new experiments
will be added to the registry on top of the existing jobs.

extra_design = benchmark_grid(tasks,
lrn("classif.debug", error_train = 0.5), resamplings, paired = TRUE)

batchmark(extra_design, reg = reg)

https://www.rdocumentation.org/packages/batchtools/topics/getStatus
https://www.rdocumentation.org/packages/batchtools/topics/loadRegistry
https://www.rdocumentation.org/packages/batchtools/topics/findJobs
https://www.rdocumentation.org/packages/batchtools/topics/findJobs
https://www.rdocumentation.org/packages/batchtools/topics/findJobs
https://www.rdocumentation.org/packages/batchtools/topics/grepLogs
https://mlr3batchmark.mlr-org.com/reference/batchmark.html
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Registry Argument

All batchtools functions that interoperate with a registry take a registry as an argu-
ment. By default, this argument is set to the last created registry, which is currently
the reg object defined earlier. We pass it explicitly in this section for clarity.

Now we can get the IDs of the new jobs (which have not been submitted yet) and submit
them by passing their IDs.

ids = findNotSubmitted(reg = reg)
submitJobs(ids, reg = reg)

After these jobs have terminated, we can get a summary of those that failed:

getStatus(reg = reg)

Status for 240 jobs at 2025-06-18 10:13:27:
Submitted : 240 (100.0%)
-- Queued : 0 ( 0.0%)
-- Started : 240 (100.0%)
---- Running : 0 ( 0.0%)
---- Done : 213 ( 88.8%)
---- Error : 27 ( 11.2%)
---- Expired : 0 ( 0.0%)

error_ids = findErrors(reg = reg)
summarizeExperiments(error_ids, by = c("task_id", "learner_id"),
reg = reg)

task_id learner_id .count
1: kr-vs-kp classif.debug 6
2: breast-w classif.debug 3
3: credit-approval classif.debug 5
4: credit-g classif.debug 6
5: diabetes classif.debug 5
6: spambase classif.debug 2

In a real experiment, we would now investigate the debug learner further to understand
why it errored, try to fix those bugs, and then potentially rerun those experiments only.

Assuming learners have been debugged (or we are happy to ignore them), we can then
collect the results of our experiment with reduceResultsBatchmark(), which constructs a
BenchmarkResult from the results. Below we filter out results from the debug learner.

ids = findExperiments(algo.pars = learner_id != "classif.debug",
reg = reg)

bmr = reduceResultsBatchmark(ids, reg = reg)
bmr$aggregate()[1:5]

nr task_id learner_id resampling_id iters classif.ce

https://mlr3batchmark.mlr-org.com/reference/reduceResultsBatchmark.html
https://mlr3.mlr-org.com/reference/BenchmarkResult.html
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1: 1 kr-vs-kp logreg custom 10 0.02566
2: 2 kr-vs-kp ranger custom 10 0.01377
3: 3 kr-vs-kp featureless custom 10 0.47778
4: 4 breast-w logreg custom 10 0.03578
5: 5 breast-w ranger custom 10 0.02861
Hidden columns: resample_result

11.2.4 Custom Experiments with batchtools

This section covers advanced ML or technical details.

In general, we recommend using mlr3batchmark for scheduling simpler mlr3 jobs on an
HPC, however, we will also briefly show you how to use batchtools without mlr3batchmark
for finer control over your experiment. Again we start by creating an experiment registry.

reg = makeExperimentRegistry(
file.dir = "./experiments-custom",
seed = 1,
packages = "mlr3verse"

)

“Problems” are then manually registered with addProblem(). In this example, we will regis-
ter all task-resampling combinations of the large_design above using the task ids as unique
names. We specify that the data for the problem (i.e., the static data that is trained/tested
by the learner) is the task/resampling pair. Finally, we pass a function (fun, dynamic prob-
lem part) that takes in the static problem data and returns it as the problem instance
without making changes (Figure 11.2). The fun shown below is the default behavior and
could be omitted, we show it here for clarity. This function could be more complex and take
further parameters to modify the problem instance dynamically.

for (i in seq_along(tasks)) {
addProblem(

name = tasks[[i]]$id,
data = list(task = tasks[[i]], resampling = resamplings[[i]]),
fun = function(data, job, ...) data,
reg = reg

)
}

Next, we need to specify the algorithm to run with addAlgorithm(). Algorithms are again
specified with a unique name, as well as a function to define the computational steps of the
experiment and to return its result.

Here, we define one job to represent a complete resample experiment. In general, algorithms
in batchtools may return arbitrary objects – those are simply stored on the file system
and can be processed with a custom function while collecting the results.

https://www.rdocumentation.org/packages/batchtools/topics/addProblem
https://www.rdocumentation.org/packages/batchtools/topics/addAlgorithm
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Figure 11.2: Illustration of a batchtools problem, algorithm, and experiment.

addAlgorithm(
"run_learner",
fun = function(instance, learner, job, ...) {

resample(instance$task, learner, instance$resampling)
},
reg = reg

)

Finally, we will define concrete experiments with addExperiments() by passing problem
designs (prob.designs) and algorithm designs (algo.designs) that assign parameters to
problems and algorithms, respectively (Figure 11.2).

In the code below, we add all resampling iterations for the six tasks as experiments. By
leaving prob.designs unspecified, experiments for all existing problems are created per
default. We set the learner parameter of our algorithm ("run_learner") to be the three
learners from our large_design object. Note that whenever an experiment is added, the
current seed is assigned to the experiment and then incremented.

alg_des = list(run_learner = data.table(learner = learners))
addExperiments(algo.designs = alg_des, reg = reg)
summarizeExperiments()

Our jobs can now be submitted to the cluster; by not specifying specific job IDs, all exper-
iments are submitted.

submitJobs(reg = reg)

We can retrieve the job results using loadResult(), which outputs the objects returned by
the algorithm function, which in our case is a ResampleResult. To retrieve all results at
once, we can use reduceResults() to create a single BenchmarkResult. For this, we use
the combine function c() which can combine multiple objects of type ResampleResult or
BenchmarkResult to a single BenchmarkResult.

rr = loadResult(1, reg = reg)
as.data.table(rr)[1:5]

task learner resampling

https://www.rdocumentation.org/packages/batchtools/topics/addExperiments
https://www.rdocumentation.org/packages/batchtools/topics/loadResult
https://mlr3.mlr-org.com/reference/ResampleResult.html
https://www.rdocumentation.org/packages/batchtools/topics/reduceResults
https://mlr3.mlr-org.com/reference/BenchmarkResult.html
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1: <TaskClassif:kr-vs-kp> <GraphLearner:logreg> <ResamplingCustom>
2: <TaskClassif:kr-vs-kp> <GraphLearner:logreg> <ResamplingCustom>
3: <TaskClassif:kr-vs-kp> <GraphLearner:logreg> <ResamplingCustom>
4: <TaskClassif:kr-vs-kp> <GraphLearner:logreg> <ResamplingCustom>
5: <TaskClassif:kr-vs-kp> <GraphLearner:logreg> <ResamplingCustom>
2 variable(s) not shown: [iteration, prediction]

bmr = reduceResults(c, reg = reg)
bmr$aggregate()[1:5]

nr task_id learner_id resampling_id iters classif.ce
1: 1 kr-vs-kp logreg custom 10 0.02566
2: 2 kr-vs-kp ranger custom 10 0.01283
3: 3 kr-vs-kp featureless custom 10 0.47778
4: 4 breast-w logreg custom 10 0.03578
5: 5 breast-w ranger custom 10 0.02576
Hidden columns: resample_result

11.3 Statistical Analysis
The final step of a benchmarking experiment is to use statistical tests to determine which (if
any) of our learners performed the best. mlr3benchmark provides infrastructure for applying
statistical significance tests on BenchmarkResult objects.

Currently, Friedman tests and pairwise Friedman-Nemenyi tests (Demšar 2006) are sup-
ported to analyze benchmark experiments with at least two independent tasks and at least
two learners. As a first step, we recommend performing a pairwise comparison of learn-
ers using pairwise Friedman-Nemenyi tests with $friedman_posthoc(). This method first
performs a global comparison to see if any learner is statistically better than another. To
use these methods we first convert the benchmark result to a BenchmarkAggr object using
as_benchmark_aggr()

as_benchmark_aggr()
.

library(mlr3benchmark)
bma = as_benchmark_aggr(bmr, measures = msr("classif.ce"))
bma$friedman_posthoc()

Pairwise comparisons using Nemenyi-Wilcoxon-Wilcox all-pairs test for a two-way balanced complete block design

data: ce and learner_id and task_id

logreg ranger
ranger 0.4804 -
featureless 0.1072 0.0043

P value adjustment method: single-step

These results indicate a statistically significant difference between the "featureless"
learner and "ranger" (assuming 𝑝 ≤ 0.05 is significant). This table can be visualized in
a critical difference plot (Figure 11.3), which typically shows the mean rank of a learning

https://mlr3benchmark.mlr-org.com/reference/mlr3benchmark-package.html
https://mlr3.mlr-org.com/reference/BenchmarkResult.html
https://mlr3benchmark.mlr-org.com/reference/BenchmarkAggr.html
https://mlr3benchmark.mlr-org.com/reference/as_benchmark_aggr.html
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algorithm on the x-axis along with a thick horizontal line that connects learners that are
pairwise not significantly different (while correcting for multiple tests).

autoplot(bma, type = "cd", ratio = 1/5)

Warning in geom_segment(aes(x = 0, xend = max(rank) + 1, y = 0, yend = 0)): All aesthetics have length 1, but the data has 3 rows.
i Please consider using `annotate()` or provide this layer with data
containing a single row.

Critical Difference = 1.35

0 1 2 3 4

logreg

ranger featureless

Figure 11.3: Critical difference diagram comparing the random forest, logistic regression,
and featureless baseline. The critical difference of 1.35 in the title refers to the difference in
mean rank required to conclude that one learner performs statistically different to another.

Using Figure 11.3 we can conclude that on average the random forest had the lowest (i.e.,
best) rank, followed by the logistic regression, and then the featureless baseline. While the
random forest was statistically better performing than the baseline (no connecting line in
Figure 11.3), it was not statistically superior to the logistic regression (connecting line in
Figure 11.3). We could now further compare this with the large benchmark study conducted
by Couronné, Probst, and Boulesteix (2018), where the random forest outperformed the
logistic regression in 69% of 243 real-world datasets.

11.4 Conclusion
In this chapter, we have explored how to conduct large-scale machine learning experiments
using mlr3. We have shown how to acquire diverse datasets from OpenML through the
mlr3oml interface package, how to execute large-scale experiments with batchtools and
mlr3batchmark integration, and finally how to analyze the results of these experiments with
mlr3benchmark. For further reading about batchtools we recommend Lang, Bischl, and
Surmann (2017) and Bischl et al. (2015).

Table 11.1: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor/Function Fields/Methods
OMLData odt() $data; $feature_names

https://mlr3oml.mlr-org.com
https://mlr3batchmark.mlr-org.com
https://mlr3benchmark.mlr-org.com
https://cran.r-project.org/package=batchtools
https://mlr3oml.mlr-org.com/reference/oml_data.html
https://mlr3oml.mlr-org.com/reference/odt.html
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Class Constructor/Function Fields/Methods
OMLTask otsk() $data; $task_splits
OMLCollection ocl() $task_ids
Registry makeExperimentRegistry() submitJobs();

getStatus();
reduceResultsBatchmark;
getJobTable

batchmark() -
BenchmarkAggr() as_benchmark_aggr() $friedman_posthoc()

11.5 Exercises
In these exercises, we will conduct an empirical study analyzing whether a random forest
is predictively stronger than a single decision tree. Our null hypothesis is that there is no
significant performance difference.

1. Load the OpenML collection with ID 269, which contains regression tasks from
the AutoML benchmark (Gijsbers et al. 2022). Peek into this suite to study the
contained data sets and their characteristics. Then find all tasks with less than
4000 observations and convert them to mlr3 tasks.

2. Create an experimental design that compares lrn("regr.ranger") and
lrn("regr.rpart") on those tasks. Use the robustify pipeline for both learn-
ers and a featureless fallback learner. You can use three-fold CV instead of
the OpenML resamplings to save time. Run the comparison experiments with
batchtools. Use default hyperparameter settings and do not perform any tun-
ing to keep the experiments simple.

3. Conduct a global Friedman test and, if appropriate, post hoc Friedman-Nemenyi
tests, and interpret the results. As an evaluation measure, use the MSE.

https://mlr3oml.mlr-org.com/reference/oml_task.html
https://mlr3oml.mlr-org.com/reference/otsk.html
https://mlr3oml.mlr-org.com/reference/oml_collection.html
https://mlr3oml.mlr-org.com/reference/ocl.html
https://www.rdocumentation.org/packages/batchtools/topics/makeExperimentRegistry
https://www.rdocumentation.org/packages/batchtools/topics/submitJobs
https://www.rdocumentation.org/packages/batchtools/topics/getStatus
https://mlr3batchmark.mlr-org.com/reference/reduceResultsBatchmark.html
https://www.rdocumentation.org/packages/batchtools/topics/getJobTable
https://mlr3batchmark.mlr-org.com/reference/batchmark.html
https://mlr3benchmark.mlr-org.com/reference/BenchmarkAggr.html
https://mlr3benchmark.mlr-org.com/reference/as_benchmark_aggr.html
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The increasing availability of data and software frameworks to create predictive models
has allowed the widespread adoption of ML in many applications. However, high predictive
performance of such models often comes at the cost of interpretability. Many models are
called a ‘black box’ as the decision-making process behind their predictions is often not
immediately interpretable. This lack of explanation can decrease trust in ML and may
create barriers to the adoption of predictive models, especially in critical applications such
as medicine, engineering, and finance (Lipton 2018).

In recent years, many interpretation methods have been developed that allow developers
to ‘peek’ inside these models and produce explanations to, for example, understand how
features are used by the model to make predictions (Guidotti et al. 2018). Interpretation
methods can be valuable from multiple perspectives:

1. To gain global insights into a model, for example, to identify which features were
the most important overall or how the features act on the predictions.

2. To improve the model if flaws are identified (in the data or model), for example,
if the model depends on one feature unexpectedly.

3. To understand and control individual predictions, for example, to identify how a
given prediction may change if a feature is altered.

4. To assess algorithmic fairness, for example, to inspect whether the model adversely
affects certain subpopulations or individuals (see Chapter 14).

In this chapter, we will look at model-agnostic (i.e., can be applied to any model) inter-
pretable machine learning Inter-

pretable
Machine
Learning

(IML) methods that can be used to understand models post hoc
(after they have been trained). We will focus on methods implemented in three R packages
that nicely interface with mlr3: iml (Section 12.1), counterfactuals (Section 12.2), and
DALEX (Section 12.3).

iml and DALEX offer similar functionality but differ in design choices in that iml makes use
of the R6 class system whereas DALEX is based on the S3 class system. counterfactuals
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https://cran.r-project.org/package=iml
https://cran.r-project.org/package=counterfactuals
https://cran.r-project.org/package=DALEX
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also uses the R6 class system. In contrast to iml and counterfactuals, DALEX focuses
on comparing multiple predictive models, usually of different types. We will only provide
a brief overview of the methodology discussed below, we recommend Molnar (2022) as a
comprehensive introductory book about IML.

As a running example throughout this chapter, we will consider a gradient boosting machine
(GBM) fit on half the features in the "german_credit" task. In practice, we would tune
the hyperparameters of GBM as discussed in Chapter 4 and perform feature selection as
discussed in Chapter 6 to select the most relevant features. However, for the sake of simplic-
ity, we utilize an untuned GBM in these examples as it exhibited satisfactory performance
even without fine-tuning.

library(mlr3verse)
tsk_german = tsk("german_credit")$select(
cols = c("duration", "amount", "age", "status", "savings", "purpose",
"credit_history", "property", "employment_duration", "other_debtors"))

split = partition(tsk_german)
lrn_gbm = lrn("classif.gbm", predict_type = "prob")
lrn_gbm$train(tsk_german, row_ids = split$train)

Performance-based Interpretation Methods Require Test Data

Performance-based interpretation methods such as permutation feature importance
(Section 12.1.1) rely on measuring the generalization performance. Hence, they should
be computed on an independent test set to decrease bias in estimation (see Chapter 3).
However, the differences in interpretation between training and test data are less pro-
nounced (Molnar et al. 2022) in prediction-based methods that do not require perfor-
mance estimation such as ICE/PD (Section 12.1.2) or Shapley values (Section 12.1.4).

12.1 The iml Package
iml (Molnar, Bischl, and Casalicchio 2018) implements a unified interface for a variety
of model-agnostic interpretation methods that facilitate the analysis and interpretation
of machine learning models. iml supports machine learning models (for classification or
regression) fitted by any R package, and in particular all mlr3 models are supported by
wrapping learners in an Predictor object, which unifies the input-output behavior of the
trained models. This object contains the prediction model as well as the data used for
analyzing the model and producing the desired explanation. We construct the Predictor
object using our trained learner and heldout test data:

library(iml)

# features in test data
credit_x = tsk_german$data(rows = split$test,
cols = tsk_german$feature_names)

# target in test data

https://cran.r-project.org/package=iml
https://www.rdocumentation.org/packages/iml/topics/Predictor
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credit_y = tsk_german$data(rows = split$test,
cols = tsk_german$target_names)

predictor = Predictor$new(lrn_gbm, data = credit_x, y = credit_y)

With our Predictor setup we can now consider different model interpretation methods.

12.1.1 Feature Importance
When deploying a model in practice, it is often of interest to know which features con-
tribute the most to the predictive performance of the model. This can be useful to better
understand the problem at hand and the relationship between features and target. In model
development, this can be used to filter features (Section 6.1) that do not contribute a lot
to the model’s predictive ability. In this book, we use the term ‘feature importance’ to
describe global methods that calculate a single score per feature that reflect the importance
regarding a given quantity of interest, e.g., model performance, thus allowing features to be
ranked.

One of the most popular feature importance methods is the permutation feature importance Permutation
Feature
Importance

(PFI), originally introduced by Breiman (2001a) for random forests and adapted by Fisher,
Rudin, and Dominici (2019) as a model-agnostic feature importance measure (originally
termed, ‘model reliance’). Feature permutation is the process of randomly shuffling observed
values for a single feature in a dataset. This removes the original dependency structure of the
feature with the target variable and with all other features while maintaining the marginal
distribution of the feature. The PFI measures the change in the model performance before
(original model performance) and after (permuted model performance) permuting a feature.
If a feature is not important, then there will be little change in model performance after
permuting that feature. Conversely, we would expect a clear decrease in model performance
if the feature is more important. It is generally recommended to repeat the permutation
process and aggregate performance changes over multiple repetitions to decrease randomness
in results.

PFI is run in iml by constructing an object of class FeatureImp and specifying the perfor-
mance measure, below we use classification error. By default, the permutation is repeated
five times to keep computation time low (this can be changed with n.repetitions when
calling the constructor $new(), below we set n.repetitions = 100) and in each repetition,
the importance value corresponding to the change in the classification error is calculated.
The $plot() method shows the median of the five resulting importance values (as a point)
and the boundaries of the error bars in the plot refer to the 5% and 95% quantiles of the
importance values (Figure 12.1).

Increase the Number of Repetitions to Obtain Useful Error Bars

The default number of repetitions when constructing a FeatureImp object is 5. How-
ever, the number of repetitions should be increased if you want to obtain useful error
bars from the resulting plot.

importance = FeatureImp$new(predictor, loss = "ce", n.repetitions = 100)
importance$plot()

https://www.rdocumentation.org/packages/iml/topics/FeatureImp
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Figure 12.1: Permutation feature importance (PFI). Points indicate the median and bars
the 5% and 95% quantiles of the PFI over five repetitions of the permutation process.

The plot automatically ranks features from most (largest median performance change) to
least (smallest median performance change) important. In Figure 12.1, the feature status is
most important, if we permute the status column in the data the classification error of our
model increases by a factor of around 1.18. By default, FeatureImp calculates the ratio of
the model performance before and after permutation as an importance value; the difference
of the performance measures can be returned by passing compare = "difference" when
calling $new().
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12.1.2 Feature Effects
Feature effect methods describe how or to what extent a feature contributes towards the
model predictions by analyzing how the predictions change when changing a feature. These
methods can be distinguished between local and global feature effect methods. Global fea-
ture effect methods refer to how a prediction changes on average when a feature is changed.
In contrast, local feature effect methods address the question of how a single prediction
of a given observation changes when a feature value is changed. To a certain extent, local
feature effect methods can reveal interactions in the model that become visible when the
local effects are heterogeneous, i.e., if changes in the local effect are different across the
observations.

Partial dependence Partial
Dependence

(PD) plots (Friedman 2001) can be used to visualize global feature
effects by visualizing how model predictions change on average when varying the values of
a given feature of interest.

Individual conditional expectation Individual
Conditional
Expectation

(ICE) curves (Goldstein et al. 2015) (a.k.a. Ceteris
Paribus Effects) are a local feature effects method that display how the prediction of a
single observation changes when varying a feature of interest, while all other features stay
constant. Goldstein et al. (2015) demonstrated that the PD plot is the average of ICE
curves. ICE curves are constructed by taking a single observation and feature of interest,
and then replacing the feature’s value with another value and plotting the new prediction,
this is then repeated for many feature values (e.g., across an equidistant grid of the feature’s
value range). The x-axis of an ICE curve visualizes the set of replacement feature values
and the y-axis is the model prediction. Each ICE curve is a local explanation that assesses
the feature effect of a single observation on the model prediction. An ICE plot contains
one ICE curve (line) per observation. If the ICE curves are heterogeneous, i.e., not parallel,
then the model may have estimated an interaction involving the considered feature.

Feature Effects Can Be Non-Linear

Feature effects are very similar to regression coefficients, 𝛽, in linear models which
offer interpretations such as “if you increase this feature by one unit, your prediction
increases on average by 𝛽 if all other features stay constant”. However, feature effects
are not limited to linear effects and can be applied to any type of predictive model.

Let us put this into practice by considering how the feature amount influences the pre-
dictions in our subsetted credit classification task. Below we initialize an object of class
FeatureEffect by passing the feature name of interest and the feature effect method, we
use "pdp+ice" to indicate that we want to visualize ICE curves with a PD plot (average of
the ICE curves). We recommend always plotting PD and ICE curves together as PD plots
on their own could mask heterogeneous effects. We use $plot() to visualize the results
(Figure 12.2).

effect = FeatureEffect$new(predictor, feature = "amount",
method = "pdp+ice")

effect$plot()

https://www.rdocumentation.org/packages/iml/topics/FeatureEffect
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Figure 12.2: Partial dependence (PD) plot (yellow) and individual conditional expectation
(ICE) curves (black) that show how the credit amount affects the predicted credit risk.

Figure 12.2 shows that if the amount is smaller than roughly 10,000 then on average there
is a high chance that the predicted creditworthiness will be good. Furthermore, the ICE
curves are roughly parallel, meaning that there do not seem to be strong interactions present
where amount is involved.

12.1.3 Surrogate Models
Interpretable models such as decision trees or linear models can be used as surrogate models
to approximate or mimic an, often very complex, black box model. Inspecting the surrogate
model can provide insights into the behavior of a black box model, for example by looking
at the model coefficients in a linear regression or splits in a decision tree. We differentiate
between local surrogate models, which approximate a model locally around a specific data
point of interest, and global surrogate models which approximate the model across the entire
input space (Ribeiro, Singh, and Guestrin 2016; Molnar 2022).

The features used to train a surrogate model are usually the same features used to train the
black box model or at least data with the same distribution to ensure a representative input
space. However, the target used to train the surrogate model is the predictions obtained
from the black box model, not the real outcome of the underlying data. Hence, conclusions
drawn from the surrogate model are only valid if the surrogate model approximates the
black box model very well (i.e., if the model fidelity is high). It is therefore also important
to measure and report the approximation error of the surrogate model.

The data used to train the black box model may be very complex or limited, making it
challenging to directly train a well-performing interpretable model on that data. Instead,
we can use the black box model to generate new labeled data in specific regions of the input
space with which we can augment the original data. The augmented data can then be used
to train an interpretable model that captures and explains the relationships learned by the
black box model (in specific regions) or to identify flaws or unexpected behavior.
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12.1.3.1 Global Surrogate Model

Initializing the TreeSurrogate class fits a conditional inference tree (ctree()) surrogate
model to the predictions from our trained model. This class extracts the decision rules
created by the tree surrogate and the $plot() method visualizes the distribution of the pre-
dicted outcomes from each terminal node. Below, we pass maxdepth = 2 to the constructor
to build a tree with two binary splits, yielding four terminal nodes.

tree_surrogate = TreeSurrogate$new(predictor, maxdepth = 2L)

Before inspecting this model, we need to first check if the surrogate model approximates the
prediction model accurately, which we can assess by comparing the predictions of the tree
surrogate and the predictions of the black box model. For example, we could quantify the
number of matching predictions and measure the accuracy of the surrogate in predicting
the predictions of the black box GBM model:

pred_surrogate = tree_surrogate$predict(credit_x, type = "class")$.class
pred_surrogate = factor(pred_surrogate, levels = c("good", "bad"))
pred_gbm = lrn_gbm$predict_newdata(credit_x)$response
confusion = mlr3measures::confusion_matrix(pred_surrogate, pred_gbm,
positive = "good")

confusion

truth
response good bad

good 245 20
bad 39 26

acc : 0.8212; ce : 0.1788; dor : 8.1667; f1 : 0.8925
fdr : 0.0755; fnr : 0.1373; fomr: 0.6000; fpr : 0.4348
mcc : 0.3726; npv : 0.4000; ppv : 0.9245; tnr : 0.5652
tpr : 0.8627

This shows an accuracy of around 82% in predictions from the surrogate compared to the
black box model, which is good enough for us to use our surrogate for further interpretation,
for example by plotting the splits in the terminal node:

tree_surrogate$plot()

https://www.rdocumentation.org/packages/iml/topics/TreeSurrogate
https://www.rdocumentation.org/packages/partykit/topics/ctree
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Figure 12.3: Distribution of the predicted outcomes for each terminal node identified by
the tree surrogate. The top two nodes consist of applications with a positive balance in
the account (statusis either "0 <= ... < 200 DM", "... >= 200 DM" or "salary for
at least 1 year") and either a duration of less or equal than 42 months (top left), or
more than 42 months (top right). The bottom nodes contain applicants that either have no
checking account or a negative balance (status) and either a duration of less than or equal
to 36 months (bottom left) or more than 36 months (bottom right).

Or we could access the trained tree surrogate via the $tree field of the TreeSurrogate
object and then have access to all methods in partykit:

partykit::print.party(tree_surrogate$tree)

[1] root
| [2] status in no checking account, ... < 0 DM
| | [3] duration <= 30: *
| | [4] duration > 30: *
| [5] status in 0<= ... < 200 DM, ... >= 200 DM / salary for at least 1 year
| | [6] employment_duration in unemployed, 1 <= ... < 4 yrs, 4 <= ... < 7 yrs, >= 7 yrs: *
| | [7] employment_duration < 1 yr: *

12.1.3.2 Local Surrogate Model

In general, it can be very difficult to accurately approximate the black box model with an
interpretable surrogate in the entire feature space. Therefore, local surrogate models focus
on a small area in the feature space surrounding a point of interest. Local surrogate models
are constructed as follows:

1. Obtain predictions from the black box model for a given dataset.
2. Weight the observations in this dataset by their proximity to our point of interest.
3. Fit an interpretable, surrogate model on the weighted dataset using the predic-

tions of the black box model as the target.

https://cran.r-project.org/package=partykit
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4. Explain the prediction of our point of interest with the surrogate model.

To illustrate this, we will select a random data point to explain. As we are dealing with
people, we will name our observation “Charlie” and first look at the black box predictions:

Charlie = tsk_german$data(rows = 127L, cols = tsk_german$feature_names)
gbm_predict = predictor$predict(Charlie)
gbm_predict

good bad
1 0.6014 0.3986

We can see that the model predicts the class ‘good’ with 60.1% probability, so now we
can use LocalModel to find out why this prediction was made. The underlying surrogate
model is a locally weighted L1-penalized linear regression model such that only a pre-defined
number of features per class, k (default is 3), will have a non-zero coefficient and as such
are the k most influential features, below we set k = 2. We can also set the parameter
gower.power which specifies the size of the neighborhood for the local model (default is
gower.power = 1), the smaller the value, the more the model will focus on points closer to
the point of interest, below we set gower.power = 0.1. This implementation is very closely
related to Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro, Singh, and
Guestrin 2016), the differences are outlined in the documentation of iml::LocalModel.

predictor$class = "good" # explain the 'good' class
local_surrogate = LocalModel$new(predictor, Charlie, gower.power = 0.1,
k = 2)

If the prediction of the local model and the prediction of the black box GBM model greatly
differ, then you might want to experiment with changing the k and gower.power parameters.
These parameters can be considered as hyperparameters of the local surrogate model, which
should be tuned to obtain an accurate local surrogate. First, we check if the predictions for
Charlie match:

c(gbm = gbm_predict[[1]], local = local_surrogate$predict()[[1]])

gbm local
0.6014 0.6449

Ideally, we should assess the fidelity of the surrogate model in the local neighborhood of
Charlie, i.e., how well the local surrogate model approximates the predictions of the black
box GBM model for multiple data points in the vicinity of Charlie. A practical approach
to assess this local model fidelity involves generating artificial data points within Charlie’s
local neighborhood (and potentially applying distance-based weighting) or selecting the
𝑘 nearest neighbors from the original data. For illustration purposes, we now quantify the
approximation error using the mean absolute error calculated from the 10 nearest neighbors
(including Charlie) according to the Gower distance (Gower 1971):

ind_10nn = gower::gower_topn(Charlie, credit_x, n = 10)$index[, 1]
Charlie_10nn = credit_x[ind_10nn, ]

https://www.rdocumentation.org/packages/iml/topics/LocalModel
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gbm_pred_10nn = predictor$predict(Charlie_10nn)[[1]]
local_pred_10nn = local_surrogate$predict(Charlie_10nn)[[1]]
mean(abs(gbm_pred_10nn - local_pred_10nn))

[1] 0.112

As we see good agreement between the local and black box model (on average, the predic-
tions of both the local surrogate and the black box model for Charlie’s 10 nearest neighbors
differ only by 0.112), we can move on to look at the most influential features for Charlie’s
predictions:

local_surrogate$results[, c("feature.value", "effect")]

feature.value effect
1 duration=12 -0.03058
2 status=no checking account -0.10077

In this case, ‘duration’ and ‘status’ were most important and both have a negative effect
on the prediction of Charlie.

12.1.4 Shapley Values
Shapley values were originally developed in the context of cooperative game theory to study
how the payout of a game can be fairly distributed among the players that form a team.
This concept has been adapted for use in ML as a local interpretation method to explain
the contributions of each input feature to the final model prediction of a single observation
(Štrumbelj and Kononenko 2013). Hence, the ‘players’ are the features, and the ‘payout’,
which should be fairly distributed among features, refers to the difference between the
individual observation’s prediction and the mean prediction.

Shapley values estimate how much each input feature contributed to the final prediction
for a single observation (after subtracting the mean prediction). By assigning a value to
each feature, we can gain insights into which features were the most important ones for the
considered observation. Compared to the penalized linear model as a local surrogate model,
Shapley values guarantee that the prediction is fairly distributed among the features as they
also inherently consider interactions between features when calculating the contribution of
each feature.

Correctly Interpreting Shapley Values

Shapley values are frequently misinterpreted as the difference between the predicted
value after removing the feature from model training. The Shapley value of a feature is
calculated by considering all possible subsets of features and computing the difference
in the model prediction with and without the feature of interest included. Hence, it
refers to the average marginal contribution of a feature to the difference between the
actual prediction and the mean prediction, given the current set of features.

Shapley values can be calculated by passing the Predictor and the observation of interest to
the constructor of Shapley. The exact computation of Shapley values is time consuming, as
it involves taking into account all possible combinations of features to calculate the marginal
contribution of a feature. Therefore, the estimation of Shapley values is often approximated.

https://www.rdocumentation.org/packages/iml/topics/Shapley
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The sample.size argument (default is sample.size = 100) can be increased to obtain a
more accurate approximation of exact Shapley values.

shapley = Shapley$new(predictor, x.interest = as.data.frame(Charlie),
sample.size = 1000)

shapley$plot()
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savings=unknown/no savings account

amount=701

employment_duration=1 <= ... < 4 yrs

credit_history=no credits taken/all credits paid back duly

other_debtors=none

age=40

property=unknown / no property

purpose=furniture/equipment

duration=12

−0.10 −0.05 0.00 0.05
phi

Actual prediction: 0.60
Average prediction: 0.70

Figure 12.4: Shapley values for Charlie. The actual prediction (0.63) displays the prediction
of the model for the observation we are interested in, the average prediction (0.71) displays
the average prediction over the given test dataset. Each horizontal bar is the Shapley value
(phi) for the given feature.

In Figure 12.4, the Shapley values (phi) of the features show us how to fairly distribute the
difference of Charlie’s probability of being creditworthy to the dataset’s average probability
among the given features. The approximation is sufficiently good if all Shapley values (phi)
sum up to the difference of the actual prediction and the average prediction. Here, we used
sample.size = 1000 leading to sufficiently good prediction difference of -0.09 between
the actual prediction of Charlie (0.601) and the average prediction (0.696). The ‘purpose’
variable has the most positive effect on the probability of being creditworthy, with an
increase in the predicted probability of around 5%. In contrast, the ‘status’ variable leads
to a decrease in the predicted probability of over 10%.

12.2 The counterfactuals Package
Counterfactual explanations try to identify the smallest possible changes to the input fea-
tures of a given observation that would lead to a different prediction (Wachter, Mittelstadt,
and Russell 2017). In other words, a counterfactual explanation provides an answer to the
question: “What changes in the current feature values are necessary to achieve a different
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prediction?”.

Counterfactual explanations can have many applications in different areas such as health-
care, finance, and criminal justice, where it may be important to understand how small
changes in input features could affect the model’s prediction. For example, a counterfactual
explanation could be used to suggest lifestyle changes to a patient to reduce their risk of
developing a particular disease, or to suggest actions that would increase the chance of a
credit being approved. For our tsk("german_credit") example, we might consider what
changes in features would turn a ‘bad’ credit prediction into a ‘good’ one (Figure 12.5).

Figure 12.5: Illustration of a counterfactual explanation. The real observation (blue, right
dot) is predicted to have ‘bad’ credit. The brown (left) dot is one possible counterfactual
that would result in a ‘good’ credit prediction.

A simple counterfactual method is the What-IfWhat-If approach (Wexler et al. 2019) where, for a
given prediction to explain, the counterfactual is the closest data point in the dataset with
the desired prediction. Usually, many possible counterfactual data points can exist. However,
the approach by Wexler et al. (2019), and several other early counterfactual methods (see
Guidotti (2022) for a comprehensive overview), only produce a single, somewhat arbitrary
counterfactual explanation, which can be regarded as problematic when counterfactuals are
used for insights or actions against the model.

In contrast, the multi-objective counterfactualsMulti-
objective

Counterfac-
tuals

method (MOC) (Dandl et al. 2020) generates
multiple artificially-generated counterfactuals that may not be equal to observations in a
given dataset. The generation of counterfactuals is based on an optimization problem that
aims for counterfactuals that:

1) Have the desired prediction;
2) Are close to the observation of interest;
3) Only require changes in a few features; and
4) Originate from the same distribution as the observations in the given dataset.

In MOC, all four objectives are optimized simultaneously via a multi-objective optimization
method. Several other counterfactual methods rely on single-objective optimization meth-
ods, where multiple objectives are combined into a single objective, e.g., using a weighted
sum. However, a single-objective approach raises concerns about the appropriate weighting
of objectives and is unable to account for inherent trade-offs among individual objectives.
Moreover, it may restrict the solution set of the counterfactural search to a single candidate.
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MOC returns a set of non-dominated and, therefore equally good, counterfactuals with
respect to the four objectives (similarly to the Pareto front we saw in Section 5.2).

Counterfactual explanations are available in the counterfactuals package, which depends
on Predictor objects as inputs.

12.2.1 What-If Method
Continuing our previous example, we saw that the GBM model classifies Charlie as having
good credit with a predicted probability of 60.1%. We can use the What-If method to un-
derstand how the features need to change for this predicted probability to increase to 75%.
We initialize a WhatIfClassif object with our Predictor and state that we only want
to find one counterfactual (n_counterfactuals = 1L), increasing n_counterfactuals
would return the specified number of counterfactuals closest to the point of interest. The
$find_counterfactuals() method generates a counterfactual of class Counterfactuals,
below we set our desired predicted probability to be between 0.75 and 1 (desired_prob
= c(0.75, 1)). The $evaluate(show_diff = TRUE) method tells us how features need to
be changed to generate our desired class.

library(counterfactuals)
whatif = WhatIfClassif$new(predictor, n_counterfactuals = 1L)
cfe = whatif$find_counterfactuals(Charlie,
desired_class = "good", desired_prob = c(0.75, 1))

data.frame(cfe$evaluate(show_diff = TRUE))

age amount credit_history duration employment_duration other_debtors
1 -12 75 <NA> NA <NA> <NA>
property purpose savings status

1 <NA> <NA> <NA> ... >= 200 DM / salary for at least 1 year
dist_x_interest no_changed dist_train dist_target minimality

1 0.1227 3 0 0 2

Here we can see that, to achieve a predicted probability of at least 75% for good credit,
Charlie would have to be three years younger, the duration of credit would have to be
reduced by three months, the amount would have to be increased by 1417 DM and the
status would have to be ‘… < 0 DM’ (instead of ‘no checking account’) .

12.2.2 MOC Method
Calling the MOC method is similar to the What-If method but with a MOCClassif()
object. We set the epsilon parameter to 0 to penalize counterfactuals in the optimization
process with predictions outside the desired range. With MOC, we can also prohibit changes
in specific features via the fixed_features argument, below we restrict changes in the
‘age’ variable. For illustrative purposes, we only run the multi-objective optimizer for 30
generations.

moc = MOCClassif$new(predictor, epsilon = 0, n_generations = 30L,
fixed_features = "age")

cfe_multi = moc$find_counterfactuals(Charlie,
desired_class = "good", desired_prob = c(0.75, 1))

https://www.rdocumentation.org/packages/iml/topics/Predictor
https://www.rdocumentation.org/packages/counterfactuals/topics/WhatIfClassif
https://www.rdocumentation.org/packages/counterfactuals/topics/Counterfactuals
https://www.rdocumentation.org/packages/counterfactuals/topics/MOCClassif
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The multi-objective approach does not guarantee that all counterfactuals have the desired
prediction so we use $subset_to_valid() to restrict counterfactuals to those we are inter-
ested in:

cfe_multi$subset_to_valid()
cfe_multi

4 Counterfactual(s)

Desired class: good
Desired predicted probability range: [0.75, 1]

Head:
age amount credit_history duration

1: 40 701 no credits taken/all credits paid back duly 12
2: 40 2451 no credits taken/all credits paid back duly 4
3: 40 1550 existing credits paid back duly till now 12
6 variable(s) not shown: [employment_duration, other_debtors, property, purpose, savings, status]

This method generated 4 counterfactuals but as these are artificially generated they are not
necessarily equal to actual observations in the underlying dataset. For a concise overview of
the required feature changes, we can use the plot_freq_of_feature_changes() method,
which visualizes the frequency of feature changes across all returned counterfactuals.

cfe_multi$plot_freq_of_feature_changes()
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amount
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Figure 12.6: Barplots of the relative frequency of feature changes of the counterfactuals
found by MOC.
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We can see that ‘status’ and ‘savings’ were changed most frequently in the counterfactuals.
To see how the features were changed, we can visualize the counterfactuals for two features
on a two-dimensional ICE plot.

cfe_multi$plot_surface(feature_names = c("status", "savings")) +
theme(axis.text.x = element_text(angle = 15, hjust = .7))
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Figure 12.7: Two-dimensional surface plot for the ‘status’ and ‘savings’ variables, higher
predictions are lighter. The colors and contour lines indicate the predicted value of the
model when ‘status’ and ‘savings’ differ while all other features are set to the true (Charlie’s)
values. The white point displays the true prediction (Charlie), and the black points are the
counterfactuals that only propose changes in the two features.

12.3 The DALEX Package
DALEX (Biecek 2018) implements a similar set of methods as iml, but the architecture of
DALEX is oriented towards model comparison. The logic behind working with this package
assumes that the process of exploring models is iterative, and in successive iterations, we
want to compare different perspectives, including perspectives presented/learned by different
models. This logic is commonly referred to as the Rashomon perspective, first described in
Breiman (2001b) and more extensively developed and formalized as interactive explanatory
model analysis (Baniecki, Parzych, and Biecek 2023).

You can use the DALEX package with any classification and regression model built with mlr3
as well as with other frameworks in R. As we have already explored the methodology behind

https://cran.r-project.org/package=DALEX
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most of the methods discussed in this section, we will just focus on the implementations of
these methods in DALEX using the tsk("german_credit") running example.

Once you become familiar with the philosophy of working with the DALEX package, you can
use other packages from this family such as fairmodels (Wiśniewski and Biecek 2022) for
detection and mitigation of biases, modelStudio (Baniecki and Biecek 2019) for interactive
model exploration, modelDown (Romaszko et al. 2019) for the automatic generation of IML
model documentation, survex (Krzyziński et al. 2023) for the explanation of survival models,
or treeshap for the analysis of tree-based models.

The analysis of a model is usually an interactive process starting with evaluating a model
based on one or more performance metrics, known as a ‘shallow analysis’. In a series of
subsequent steps, one can systematically deepen understanding of the model by exploring
the importance of single variables or pairs of variables to an in-depth analysis of the rela-
tionship between selected variables to the model outcome. See Bücker et al. (2022) for a
broader discussion of what the model exploration process looks like.

This explanatory model analysisExplanatory
Model

Analysis

(EMA) process can focus on a single observation, in which
case we speak of local model analysis, or for a set of observations, in which case we refer to
global model analysis. Figure 12.8 visualizes an overview of the key functions in these two
scenarios that we will discuss in this section. An in-depth description of this methodology
can be found in Biecek and Burzykowski (2021).

Local  AnalysisGlobal Analysis 

Explanatory Model Analysis 

Deep 

Shallow 

Model Performance, AUC, RMSE

DALEX::model_performance()

Feature Importance, VIP

DALEX::model_parts()

Feature Profiles, PD, ALE

DALEX::model_profile()

Model Predict

DALEX::predict()

Feature Attributions, SHAP, BD

DALEX::predict_parts()

Feature Profiles, Ceteris Paribus

DALEX::predict_profile()

DALEX::explain()

Figure 12.8: Taxonomy of methods for model exploration presented in this section. The left
side shows global analysis methods and the right shows local analysis methods. Methods
increase in analysis complexity from top to bottom.

As with iml, DALEX also implements a wrapper that enables a unified interface to its func-
tionality. For models created with the mlr3 package, we would use explain_mlr3(), which
creates an S3 explainer object, which is a list containing at least: the model object, the
dataset that will be used for calculation of explanations, the predict function, the function
that calculates residuals, name/label of the model name and other additional information
about the model.

https://cran.r-project.org/package=fairmodels
https://cran.r-project.org/package=modelStudio
https://cran.r-project.org/package=modelDown
https://cran.r-project.org/package=survex
https://cran.r-project.org/package=treeshap
https://www.rdocumentation.org/packages/DALEXtra/topics/explain_mlr3
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library(DALEX)
library(DALEXtra)

gbm_exp = DALEXtra::explain_mlr3(lrn_gbm,
data = credit_x,
y = as.numeric(credit_y$credit_risk == "bad"),
label = "GBM Credit",
colorize = FALSE)

gbm_exp

Model label: GBM Credit
Model class: LearnerClassifGBM,LearnerClassif,Learner,R6
Data head :
age amount credit_history duration

1 67 1169 all credits at this bank paid back duly 6
2 49 2096 all credits at this bank paid back duly 12
employment_duration other_debtors property

1 >= 7 yrs none unknown / no property
2 4 <= ... < 7 yrs none unknown / no property

purpose savings
1 furniture/equipment ... >= 1000 DM
2 repairs unknown/no savings account

status
1 no checking account
2 ... >= 200 DM / salary for at least 1 year

12.3.1 Global EMA
Global EMA aims to understand how a model behaves on average for a set of observations.
In DALEX, functions for global level analysis are prefixed with model_.

The model exploration process starts (Figure 12.8) by evaluating the performance of a model.
model_performance() detects the task type and selects the most appropriate measure, as
we are using binary classification the function automatically suggests recall, precision, F1-
score, accuracy, and AUC; similarly the default plotting method is selected based on the
task type, below ROC is selected.

perf_credit = model_performance(gbm_exp)
perf_credit

Measures for: classification
recall : 0.4078
precision : 0.6462
f1 : 0.5
accuracy : 0.7455
auc : 0.7816

Residuals:
0% 10% 20% 30% 40% 50% 60% 70%

https://www.rdocumentation.org/packages/DALEX/topics/model_performance
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-0.83843 -0.43762 -0.31028 -0.22741 -0.15894 -0.10674 -0.06124 0.18553
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0.47835 0.63709 0.95862

old_theme = set_theme_dalex("ema")
plot(perf_credit, geom = "roc")
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Visual Summaries

Various visual summaries may be selected with the geom parameter. For the credit
risk task, the LIFT curve is a popular graphical summary.

Feature importance methods can be calculated with model_parts() and then plotted.

gbm_effect = model_parts(gbm_exp)
head(gbm_effect)

variable mean_dropout_loss label
1 _full_model_ 0.2184 GBM Credit
2 other_debtors 0.2201 GBM Credit
3 employment_duration 0.2217 GBM Credit
4 age 0.2230 GBM Credit
5 property 0.2238 GBM Credit
6 savings 0.2283 GBM Credit

plot(gbm_effect, show_boxplots = FALSE)

https://www.rdocumentation.org/packages/DALEX/topics/model_parts
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Figure 12.9: Graphical summary of model performance using the Receiver Operator Curve
(Section 3.4).
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Figure 12.10: Graphical summary of permutation importance of features. The longer the
bar, the larger the change in the loss function after permutation of the particular feature
and therefore the more important the feature. This plot shows that ‘status’ is the most
important feature and ‘other_debtors’ is the least important.

Calculating Importance

The type argument in the model_parts function allows you to specify how the impor-
tance of the features is to be calculated, by the difference of the loss functions (type
= "difference"), by the quotient (type = "ratio"), or without any transformation
(type = "raw").

Feature effects can be calculated with model_profile() and by default are plotted as PD
plots.

https://www.rdocumentation.org/packages/DALEX/topics/model_profile
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gbm_profiles = model_profile(gbm_exp)
gbm_profiles

Top profiles :
_vname_ _label_ _x_ _yhat_ _ids_

1 duration GBM Credit 4 0.1816 0
2 duration GBM Credit 6 0.1816 0
3 duration GBM Credit 8 0.2017 0
4 duration GBM Credit 9 0.2174 0
5 duration GBM Credit 10 0.2174 0
6 duration GBM Credit 11 0.2174 0

plot(gbm_profiles) +
theme(legend.position = "top") +
ggtitle("Partial Dependence for GBM Credit model","")
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From Figure 12.11, we can see that the GBM model has learned a non-monotonic relation-
ship for the feature amount.

Marginal and Accumulated Local Profiles

The type argument of the model_profile() function also allows marginal pro-
files (with type = "conditional") and accumulated local profiles (with type =
"accumulated") to be calculated.

12.3.2 Local EMA
Local EMA aims to understand how a model behaves for a single observation. In DALEX,
functions for local analysis are prefixed with predict_. We will carry out the following
examples using Charlie again.

https://www.rdocumentation.org/packages/DALEX/topics/model_profile
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Figure 12.11: Graphical summary of the model’s partial dependence profile for three selected
variables (age, amount, duration).

Local analysis starts with the calculation of a model prediction (Figure 12.8).

predict(gbm_exp, Charlie)

bad
0.3986

As a next step, we might consider break-down plots, which decompose the model’s prediction
into contributions that can be attributed to different explanatory variables (see the Break-
down Plots for Additive Attributions chapter in Biecek and Burzykowski (2021) for more on
this method). These are calculated with predict_parts():

plot(predict_parts(gbm_exp, new_observation = Charlie))

https://www.rdocumentation.org/packages/DALEX/topics/predict_parts
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Figure 12.12: Graphical summary of local attributions of features calculated by the break-
down method. Positive attributions are shown in green and negative attributions in red.
The violet bar corresponds to the model prediction for the explained observation and the
dashed line corresponds to the average model prediction.

Looking at Figure 12.12, we can read that the biggest contributors to the final prediction
for Charlie were the features status and savings.

Selected Order of Features

The order argument allows you to indicate the selected order of the features. This is a
useful option when the features have some relative conditional importance (e.g. preg-
nancy and sex).

The predict_parts() function can also be used to plot Shapley values with the SHAP
algorithm (Lundberg, Erion, and Lee 2019) by setting type = "shap":

plot(predict_parts(gbm_exp, new_observation = Charlie, type = "shap"),
show_boxplots = FALSE)
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Figure 12.13: Graphical summary of local attributions of features calculated by the Shap
method. Positive attributions are shown in green and negative attributions in red. The most
important feature here is the ‘status’ variable and least is ‘other_debtors’.

The results for Break Down and SHAP methods are generally similar. Differences will
emerge if there are many complex interactions in the model.

Speeding Up Shapley Computation

Shapley values can take a long time to compute. This process can be sped up at the
expense of accuracy. The parameters B and N can be used to tune this trade-off, where
N is the number of observations on which conditional expectation values are estimated
(500 by default) and B is the number of random paths used to calculate Shapley values
(25 by default).

Finally, we can plot ICE curves using predict_profile():

plot(predict_profile(gbm_exp, credit_x[30:40, ]))

https://www.rdocumentation.org/packages/DALEX/topics/predict_profile


Conclusions 281

age amount duration

20 40 60 0 5000 10000 15000 20 40 60
0.00

0.25

0.50

0.75

pr
ed

ic
tio

n

created for the GBM Credit model
Ceteris Paribus profile

Figure 12.14: Individual conditional explanations (aka Ceteris Paribus) plots for 10 rows in
the credit data (including Charlie) for three selected variables (age, amount, duration).

12.4 Conclusions
In this chapter, we learned how to gain post hoc insights into a model trained with mlr3
by using the most popular approaches from the field of interpretable machine learning. The
methods are all model-agnostic and so do not depend on specific model classes. iml and
DALEX offer a wide range of (partly) overlapping methods, while counterfactuals focuses
solely on counterfactual methods. We demonstrated on tsk("german_credit") how these
packages offer an in-depth analysis of a GBM model fitted with mlr3. As we conclude the
chapter we will highlight some limitations in the methods discussed above to help guide
your own post hoc analyses.

Correlated Features

If features are correlated, the insights from the interpretation methods should be treated
with caution. Changing the feature values of an observation without taking the correlation
with other features into account leads to unrealistic combinations of the feature values. Since
such feature combinations are also unlikely to be part of the training data, the model will
likely extrapolate in these areas (Molnar et al. 2022; Hooker and Mentch 2019). This distorts
the interpretation of methods that are based on changing single feature values such as PFI,
PD plots, and Shapley values. Alternative methods can help in these cases: conditional fea-
ture importance instead of PFI (Strobl et al. 2008; Watson and Wright 2021), accumulated
local effect plots instead of PD plots (Apley and Zhu 2020), and the KernelSHAP method
instead of Shapley values (Lundberg, Erion, and Lee 2019).

https://cran.r-project.org/package=iml
https://cran.r-project.org/package=DALEX
https://cran.r-project.org/package=counterfactuals


282 Model Interpretation

Rashomon Effect

Explanations derived from an interpretation method can be ambiguous. A method can
deliver multiple equally plausible but potentially contradicting explanations. This phe-
nomenon is also called the Rashomon effect (Breiman 2001b). This effect can be due to
changes in hyperparameters, the underlying dataset, or even the initial seed (Molnar et al.
2022).

High-Dimensional Data

tsk("german_credit") is low-dimensional with a limited number of observations. Applying
interpretation methods off-the-shelf to higher dimensional datasets is often not feasible
due to the enormous computational costs and so recent methods, such as Shapley values
that use kernel-based estimators, have been developed to help over come this. Another
challenge is that the high-dimensional IML output generated for high-dimensional datasets
can overwhelm users. If the features can be meaningfully grouped, grouped versions of
methods, e.g. the grouped feature importance proposed by Au et al. (2022), can be applied.

Table 12.1: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor/Function Fields/Methods
Predictor $new() -
FeatureImp $new(some_predictor) $plot()
FeatureEffect $new(some_predictor) $plot()
LocalModel $new(some_predictor,

some_x)
$results()

Shapley $new(some_predictor,
x.interest)

$plot()

WhatIfClassif $new(some_predictor) $find_counterfactuals()
MOCClassif $new(some_predictor) $find_counterfactuals()
explainer explain_mlr3() model_parts();

model_performance();
predict_parts()

12.5 Exercises
The following exercises are based on predictions of the value of soccer players based on
their characteristics in the FIFA video game series. They use the 2020 fifa data available
in DALEX. Solve them with either iml or DALEX.

1. Prepare an mlr3 regression task for the fifa data. Select only features describing
the age and skills of soccer players. Train a predictive model of your own choice
on this task, to predict the value of a soccer player.

2. Use the permutation importance method to calculate feature importance ranking.
Which feature is the most important? Do you find the results surprising?

3. Use the partial dependence plot/profile to draw the global behavior of the model

https://www.rdocumentation.org/packages/iml/topics/Predictor
https://www.rdocumentation.org/packages/iml/topics/FeatureImp
https://www.rdocumentation.org/packages/iml/topics/FeatureEffect
https://www.rdocumentation.org/packages/iml/topics/LocalModel
https://www.rdocumentation.org/packages/iml/topics/Shapley
https://www.rdocumentation.org/packages/counterfactuals/topics/WhatIfClassif
https://www.rdocumentation.org/packages/counterfactuals/topics/MOCClassif
https://www.rdocumentation.org/packages/DALEX/topics/explainer
https://www.rdocumentation.org/packages/DALEXtra/topics/explain_mlr3
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for this feature. Is it aligned with your expectations?
4. Choose Manuel Neuer as a specific example and calculate and plot the Shapley

values. Which feature is locally the most important and has the strongest influ-
ence on his valuation as a soccer player? Calculate the ceteris paribus profiles /
individual conditional expectation curves to visualize the local behavior of the
model for this feature. Is it different from the global behavior?
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So far, this book has only considered two tasks. In Chapter 2 we introduced deterministic re-
gression as well as deterministic and probabilistic single-label classification (Table 13.1). But
our infrastructure also works well for many other tasks, some of which are available in exten-
sion packages (Figure 1.1) and some are available by creating pipelines with mlr3pipelines.
In this chapter, we will take you through just a subset of these new tasks, focusing on the
ones that have a stable API. As we work through this chapter we will refer to the ‘building
blocks’ of mlr3, this refers to the base classes that must be extended to create new tasks,
these are Prediction, Learner, Measure, and Task. Table 13.1 summarizes available ex-
tension tasks, including the package(s) they are implemented in and a brief description of
the task.

Table 13.1: Table of extension tasks that can be used with mlr3 infrastructure. As we have
a growing community of contributors, this list is far from exhaustive and many ‘experimen-
tal’ task implementations exist; this list just represents the tasks that have a functioning
interface.

Task Package Description
Deterministic regression mlr3 Point prediction of a continuous

variable.
Deterministic single-label
classification

mlr3 Prediction of a single class for
each observation.

Probabilistic single-label
classification

mlr3 Prediction of the probability of an
observation falling into one or
more mutually exclusive
categories.

Cost-sensitive classification mlr3 and
mlr3pipelines

Classification predictions with
unequal costs associated with
misclassifications.

Survival analysis mlr3proba Time-to-event predictions with
possible ‘censoring’.

Density estimation mlr3proba Unsupervised estimation of
probability density functions.
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https://mlr3pipelines.mlr-org.com
https://mlr3.mlr-org.com
https://mlr3.mlr-org.com/reference/Prediction.html
https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3.mlr-org.com/reference/Measure.html
https://mlr3.mlr-org.com/reference/Task.html
https://mlr3.mlr-org.com
https://mlr3.mlr-org.com
https://mlr3.mlr-org.com
https://mlr3.mlr-org.com
https://mlr3pipelines.mlr-org.com
https://mlr3proba.mlr-org.com
https://mlr3proba.mlr-org.com
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Task Package Description
Spatiotemporal analysis mlr3spatiotempcv

and
mlr3spatial

Supervised prediction of data
with spatial (e.g., coordinates)
and/or temporal outcomes.

Cluster analysis mlr3cluster Unsupervised estimation of
homogeneous clusters of data
points.

13.1 Cost-Sensitive Classification
We begin by discussing a task that does not require any additional packages or infras-
tructure, only the tools we have already learned about from earlier chapters. In ‘regular’
classification, the aim is to optimize a metric (often the misclassification rate) while as-
suming all misclassification errors are deemed equally severe. A more general approach is
cost-sensitive classificationCost-

sensitive
Classifica-

tion

, in which costs caused by different kinds of errors may not be
equal. The objective of cost-sensitive classification is to minimize the expected costs. We
will use tsk("german_credit") as a running example.

Imagine you are trying to calculate if giving someone a loan of $5K will result in a profit
after one year, assuming they are expected to pay back $6K. To make this calculation, you
will need to predict if the person will have good credit. This is a deterministic classification
problem where we are predicting whether someone will be in class ‘Good’ or ‘Bad’. Now let
us consider some potential costs associated with each prediction and the eventual truth. As
cost-sensitive classification is a minimization problem, we assume lower costs correspond
to higher profits/positive outcomes, hence we write profits as negative values and losses as
positive values:

costs = matrix(c(-1, 0, 5, 0), nrow = 2, dimnames =
list("Predicted Credit" = c("good", "bad"),

Truth = c("good", "bad")))
costs

Truth
Predicted Credit good bad

good -1 5
bad 0 0

In this example, if the model predicts that the individual has bad credit (bottom row) then
there is no profit or loss, the loan is not provided. If the model predicts that the individual
has good credit and indeed the customer repays the loan with interest (top left), then you
will make a $1K profit. On the other hand, if they default (top right), you will lose $5K.

13.1.1 Cost-Sensitive Measure
We will now see how to implement a more nuanced approach to classification errors with
msr("classif.costs"). This measure takes one argument, which is a matrix with row
and column names corresponding to the class labels in the task of interest. Let us put our
insurance example into practice, notice that we have already named the cost matrix as

https://mlr3spatiotempcv.mlr-org.com
https://mlr3spatial.mlr-org.com
https://mlr3cluster.mlr-org.com
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required for the measure:

library(mlr3verse)

tsk_german = tsk("german_credit")

msr_costs = msr("classif.costs", costs = costs)
msr_costs

<MeasureClassifCosts:classif.costs>: Cost-sensitive Classification
* Packages: mlr3
* Range: [-Inf, Inf]
* Minimize: TRUE
* Average: macro
* Parameters: normalize=TRUE
* Properties: -
* Predict type: response

learners = lrns(c("classif.log_reg", "classif.featureless",
"classif.ranger"))

bmr = benchmark(benchmark_grid(tsk_german, learners,
rsmp("cv", folds = 3)))

bmr$aggregate(msr_costs)[, c(4, 7)]

learner_id classif.costs
1: classif.log_reg 0.1791
2: classif.featureless 0.8002
3: classif.ranger 0.2491

In this experiment, we find that the logistic regression learner happens to perform best as it
minimizes the expected costs (and maximizes expected profits) and the featureless learner
performs the worst. All losses result in positive costs, which means each model results in us
losing money. To improve our models, we will now turn to thresholding.

13.1.2 Thresholding
As we have discussed in Chapter 2, thresholding is a method to fine-tune the probability
at which an observation will be predicted as one class label or another. Currently in our
running example, the models above will predict a customer has good credit (in the class
‘Good’) if the probability of good credit is greater than 0.5. Here, this might not be a sensible
approach as we would likely act more conservatively and reject more credit applications with
a higher threshold due to the non-uniform costs. This is highlighted in the "threshold"
autoplot (Figure 13.1), which plots msr("classif.costs") over all possible thresholds.

prediction = lrn("classif.log_reg",
predict_type = "prob")$train(tsk_german)$predict(tsk_german)

autoplot(prediction, type = "threshold", measure = msr_costs)

As expected, the optimal threshold is greater than 0.5 which means the optimal model
should predict ‘bad’ credit more often than not.
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Figure 13.1: Changing values of cost-sensitive measure as the prediction threshold is
changed.

The optimal threshold can be automated by making use of mlr3tuning (Chapter 4) and
mlr3pipelines (Chapter 7) to tune po("tunethreshold"). Continuing the same example:

po_cv = po("learner_cv", lrn("classif.log_reg", predict_type = "prob"))
graph = po_cv %>>% po("tunethreshold", measure = msr_costs)

learners = list(as_learner(graph), lrn("classif.log_reg"))
bmr = benchmark(benchmark_grid(tsk_german, learners,
rsmp("cv", folds = 3)))

OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead.
OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead.
OptimInstanceSingleCrit is deprecated. Use OptimInstanceBatchSingleCrit instead.

bmr$aggregate(msr_costs)[, c(4, 7)]

learner_id classif.costs
1: classif.log_reg.tunethreshold -0.1060
2: classif.log_reg 0.1481

By using po("learner_cv") for internal resampling and po("tunethreshold") to find the
optimal threshold we have improved our model performance considerably and can now even
expect a profit.

https://mlr3tuning.mlr-org.com
https://mlr3pipelines.mlr-org.com
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13.2 Survival Analysis
Survival analysis is a field of statistics concerned with trying to predict/estimate the time
until an event takes place. This predictive problem is unique as survival models are trained
and tested on data that may include ‘censoring’, which occurs when the event of interest does
not take place. Survival analysis can be hard to explain in the abstract, so as a working
example consider a marathon runner in a race. Here the ‘survival problem’ is trying to
predict the time when the marathon runner finishes the race. However, if the event of
interest does not take place (e.g., the marathon runner gives up and does not finish the
race), they are said to be censored. Instead of throwing away information about censored
events, survival analysis datasets include a status variable that provides information about
the ‘status’ of an observation. So in our example, we might write the runner’s outcome as
(4, 1) if they finish the race at four hours, otherwise, if they give up at two hours we would
write (2, 0).
The key to modeling in survival analysis is that we assume there exists a hypothetical
time the marathon runner would have finished if they had not been censored, it is then
the job of a survival learner to estimate what the true survival time would have been for
a similar runner, assuming they are not censored (see Figure 13.2). Mathematically, this
is represented by the hypothetical event time, 𝑌 , the hypothetical censoring time, 𝐶, the
observed outcome time, 𝑇 = min(𝑌 , 𝐶), the event indicator Δ ∶= (𝑇 = 𝑌 ), and as usual
some features, 𝑋. Learners are trained on (𝑇 , Δ) but, critically, make predictions of 𝑌 from
previously unseen features. This means that unlike classification and regression, learners are
trained on two variables, (𝑇 , Δ), which, in R, is often captured in a Surv object. Relating to
our example above, the runner’s outcome would then be (𝑇 = 4, Δ = 1) or (𝑇 = 2, Δ = 0).
Another example is in the code below, where we randomly generate six survival times and
six event indicators, an outcome with a + indicates the outcome is censored, otherwise, the
event of interest occurred.

library(survival)
Surv(runif(6), rbinom(6, 1, 0.5))

[1] 0.5523+ 0.2905 0.4404+ 0.1184 0.9216+ 0.7326

Readers familiar with survival analysis will recognize that the description above applies
specifically to ‘right censoring’. Currently, this is the only form of censoring available in the
mlr3 universe, hence restricting our discussion to that setting. For a good introduction to
survival analysis see Collett (2014) or for machine learning in survival analysis specifically
see R. Sonabend and Bender (2023).

For the remainder of this section, we will look at how mlr3proba (R. Sonabend et al.
2021) extends the building blocks of mlr3 for survival analysis. We will begin by looking
at objects used to construct machine learning tasks for survival analysis, then we will turn
to the learners we have implemented to solve these tasks, before looking at measures for
evaluating survival analysis predictions, and then finally we will consider how to transform
prediction types.

https://www.rdocumentation.org/packages/survival/topics/Surv
https://mlr3proba.mlr-org.com
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Figure 13.2: Plot illustrating different censoring types. Dead and censored subjects (y-axis)
over time (x-axis). Black diamonds indicate true death times and white circles indicate
censoring times. Vertical line is the study end time. Subjects 1 and 2 die in the study time.
Subject 3 is censored in the study and (unknown) dies within the study time. Subject 4 is
censored in the study and (unknown) dies after the study. Subject 5 dies after the end of
the study. Figure and caption from R. E. B. Sonabend (2021).

13.2.1 TaskSurv
As we saw in the introduction to this section, survival algorithms require two targets for
training, this means the new TaskSurv object expects two targets. The simplest way to
create a survival task is to use as_task_surv(), as in the following code chunk. Note this
has more arguments than as_task_regr() to reflect multiple target and censoring types,
time and event arguments expect strings representing column names where the ‘time’ and
‘event’ variables are stored, type refers to the censoring type (currently only right censoring
supported so this is the default). as_task_surv() coerces the target columns into a Surv
object. In this section we will use the rats dataset as a running example, this dataset looks
at predicting if a drug treatment was successful in preventing 150 rats from developing
tumors. The dataset, by its own admission, is not perfect and should generally be treated
as ‘dummy’ data, which is good for examples but not real-world analysis.

library(mlr3verse)
library(mlr3proba)
library(survival)

tsk_rats = as_task_surv(survival::rats, time = "time",
event = "status", type = "right", id = "rats")

tsk_rats$head()

time status litter rx sex
1: 101 0 1 1 f

https://mlr3proba.mlr-org.com/reference/TaskSurv.html
https://mlr3proba.mlr-org.com/reference/as_task_surv.html
https://mlr3.mlr-org.com/reference/as_task_regr.html
https://www.rdocumentation.org/packages/survival/topics/Surv
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2: 49 1 1 0 f
3: 104 0 1 0 f
4: 91 0 2 1 m
5: 104 0 2 0 m
6: 102 0 2 0 m

Plotting the task with autoplot results in a Kaplan-Meier plot (Figure 13.3) which is a
non-parametric estimator of the probability of survival for the average observation in the
training set.

autoplot(tsk_rats)
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Figure 13.3: Kaplan-Meier plot of tsk("rats"). x-axis is time variable and y-axis is survival
function, S(T), defined by 1− F(T) where F is the cumulative distribution function. Crosses
indicate points where censoring takes place.

As well as creating your own tasks, you can load any of the tasks shipped with mlr3proba:

as.data.table(mlr_tasks)[task_type == "surv"]

key label task_type nrow ncol properties
1: actg ACTG 320 surv 1151 13
2: gbcs German Breast Cancer surv 686 10
3: gbsg German Breast Cancer surv 686 10
4: grace GRACE 1000 surv 1000 8
5: lung Lung Cancer surv 168 9
6: mgus MGUS surv 176 9
7: pbc Primary Biliary Cholangitis surv 276 19
8: rats Rats surv 300 5
9: veteran Veteran surv 137 8
10: whas Worcester Heart Attack surv 481 11
7 variable(s) not shown: [lgl, int, dbl, chr, fct, ord, pxc]
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13.2.2 LearnerSurv, PredictionSurv and Predict Types
The interface for LearnerSurv and PredictionSurv objects is identical to the regression
and classification settings discussed in Chapter 2. Similarly to these settings, survival learn-
ers are constructed with lrn().

mlr3proba has a different predict interface to mlr3 as all possible types of prediction (‘pre-
dict types’) are returned when possible for all survival models – i.e., if a model can compute
a particular predict type then it will be returned in PredictionSurv. The reason for this
design decision is that all these predict types can be transformed to one another and it
is therefore computationally simpler to return all at once instead of rerunning models to
change predict type. In survival analysis, the following predictions can be made:

• response – Predicted survival time.
• distr – Predicted survival distribution, either discrete or continuous.
• lp – Linear predictor calculated as the fitted coefficients multiplied by the test data.
• crank – Continuous risk ranking.

We will go through each of these prediction types in more detail and with examples to make
them less abstract. We will use lrn("surv.coxph") trained on tsk("rats") as a running
example, since for this model, all predict types except response can be computed.

tsk_rats = tsk("rats")
split = partition(tsk_rats)
prediction_cph = lrn("surv.coxph")$train(tsk_rats, split$train)$
predict(tsk_rats, split$test)

prediction_cph

<PredictionSurv> for 99 observations:
row_ids time status crank lp distr

3 104 FALSE -0.4356 -0.4356 <list[1]>
5 104 FALSE -3.1265 -3.1265 <list[1]>
7 104 FALSE 0.4090 0.4090 <list[1]>

--- --- --- --- --- ---
297 79 TRUE 0.4300 0.4300 <list[1]>
298 92 FALSE -1.4339 -1.4339 <list[1]>
300 102 FALSE -2.2609 -2.2609 <list[1]>

predict_type = “response”

Counterintuitively for many, the response prediction of predicted survival times is the least
common predict type in survival analysis. The likely reason for this is due to the presence
of censoring. We rarely observe the true survival time for many observations and therefore
it is unlikely any survival model can confidently make predictions for survival times. This
is illustrated in the code below.

In the example below we train and predict from a survival SVM (lrn("surv.svm")), note we
use type = "regression" to select the algorithm that optimizes survival time predictions
and gamma.mu = 1e-3 is selected arbitrarily as this is a required parameter (this parameter
should usually be tuned). We then compare the predictions from the model to the true data.

https://mlr3proba.mlr-org.com/reference/LearnerSurv.html
https://mlr3proba.mlr-org.com/reference/PredictionSurv.html
https://mlr3.mlr-org.com/reference/mlr_sugar.html


Survival Analysis 293

library(mlr3extralearners)
prediction_svm = lrn("surv.svm", type = "regression", gamma = 1e-3)$
train(tsk_rats, split$train)$predict(tsk_rats, split$test)

data.frame(pred = prediction_svm$response[1:3],
truth = prediction_svm$truth[1:3])

pred truth
1 86.36 104+
2 86.16 104+
3 85.95 104+

As can be seen from the output, our predictions are all less than the true observed time,
which means we know our model underestimated the truth. However, because each of the
true values are censored times, we have absolutely no way of knowing if these predictions
are slightly bad or absolutely terrible, (i.e., the true survival times could be 105, 99, 92 or
they could be 300, 1000, 200). Hence, with no realistic way to evaluate these models, survival
time predictions are rarely useful.

predict_type = “distr”

Unlike regression in which deterministic/point predictions are most common, in survival
analysis distribution predictions are much more common. You will therefore find that the
majority of survival models in mlr3proba will make distribution predictions by default.
These predictions are implemented using the distr6 package, which allows visualization
and evaluation of survival curves (defined as 1− cumulative distribution function). Below
we extract the first three $distr predictions from our running example and calculate the
probability of survival at 𝑡 = 77.

prediction_cph$distr[1:3]$survival(77)

[,1] [,2] [,3]
77 0.9412 0.9959 0.8684

The output indicates that there is a 94.1%, 99.6%, 86.8%, chance of the first three predicted
rats being alive at time 77 respectively.

predict_type = “lp”

lp, often written as 𝜂 in academic writing, is computationally the simplest prediction and
has a natural analog in regression modeling. Readers familiar with linear regression will know
that when fitting a simple linear regression model, 𝑌 = 𝑋𝛽, we are estimating the values for
𝛽, and the estimated linear predictor (lp) is then 𝑋 ̂𝛽, where ̂𝛽 are our estimated coefficients.
In simple survival models, the linear predictor is the same quantity (but estimated in a
slightly more complicated way). The learner implementations in mlr3proba are primarily
machine-learning focused and few of these models have a simple linear form, which means
that lp cannot be computed for most of these. In practice, when used for prediction, lp is
a proxy for a relative risk/continuous ranking prediction, which is discussed next.

predict_type = “crank”

The final prediction type, crank, is the most common in survival analysis and perhaps also
the most confusing. Academic texts will often refer to ‘risk’ predictions in survival analysis

https://alan-turing-institute.r-universe.dev/ui#package:distr6
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(hence why survival models are often known as ‘risk prediction models’), without defining
what ‘risk’ means. Often, risk is defined as exp(𝜂) as this is a common quantity found in
simple linear survival models. However, sometimes risk is defined as exp(−𝜂), and sometimes
it can be an arbitrary quantity that does not have a meaningful interpretation. To prevent
this confusion in mlr3proba, we define the predict type crank, which stands for continuous
ranking. This is best explained by example; continuing from the previous we output the
first three crank predictions.

prediction_cph$crank[1:3]

1 2 3
-0.4356 -3.1265 0.4090

The output tells us that the first rat is at the lowest risk of death (smaller values represent
lower risk) and the third rat is at the highest risk. The distance between predictions also tells
us that the difference in risk between the second and third rats is smaller than the difference
between the first and second. The actual values themselves are meaningless and therefore
comparing crank values between samples (or papers or experiments) is not meaningful.

The crank prediction type is informative and common in practice because it allows identi-
fying observations at lower/higher risk to each other, which is useful for resource allocation,
e.g., which patient should be given an expensive treatment, and clinical trials, e.g., are
people in a treatment arm at lower risk of disease X than people in the control arm.

Interpreting Survival Risk

The interpretation of ‘risk’ for survival predictions differs across R packages and some-
times even between models in the same package. In mlr3proba there is one consistent
interpretation of crank: lower values represent a lower risk of the event taking place
and higher values represent higher risk.

13.2.3 MeasureSurv
Survival models in mlr3proba are evaluated with MeasureSurv objects, which are con-
structed in the usual way with msr().

In general survival measures can be grouped into the following:

1. Discrimination measures – Quantify if a model correctly identifies if one observa-
tion is at higher risk than another. Evaluate crank and/or lp predictions.

2. Calibration measures – Quantify if the average prediction is close to the truth (all
definitions of calibration are unfortunately vague in a survival context). Evaluate
crank and/or lp predictions.

3. Scoring rules – Quantify if probabilistic predictions are close to true values. Eval-
uate distr predictions.

as.data.table(mlr_measures)[
task_type == "surv", c("key", "predict_type")][1:5]

key predict_type
1: surv.brier distr

https://mlr3proba.mlr-org.com/reference/MeasureSurv.html
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2: surv.calib_alpha distr
3: surv.calib_beta lp
4: surv.calib_index distr
5: surv.chambless_auc lp

There is not a consensus in the literature around the ‘best’ survival measures to use to eval-
uate models. We recommend ISBS (Integrated Survival Brier Score) (msr("surv.graf"))
to evaluate the quality of distr predictions, concordance index (msr("surv.cindex")) to
evaluate a model’s discrimination, and D-Calibration (msr("surv.dcalib")) to evaluate a
model’s calibration.

Using these measures, we can now evaluate our predictions from the previous example.

prediction_cph$score(msrs(c("surv.graf", "surv.cindex", "surv.dcalib")))

surv.graf surv.cindex surv.dcalib
0.06064 0.78928 0.82181

The model’s performance seems okay as the ISBS and DCalib are relatively low and the
C-index is greater than 0.5 however it is very hard to determine the performance of any
survival model without comparing it to some baseline (usually the Kaplan-Meier).

13.2.4 Composition
Throughout mlr3proba documentation we refer to “native” and “composed” predictions. We
define a ‘native’ prediction as the prediction made by a model without any post-processing,
whereas a ‘composed’ prediction is returned after post-processing.

13.2.4.1 Internal Composition

mlr3proba makes use of composition internally to return a "crank" prediction for every
learner. This is to ensure that we can meaningfully benchmark all models according to at
least one criterion (discrimination performance). The package uses the following rules to
create "crank" predictions:

1. If a model returns a ‘risk’ prediction then crank = risk (we may multiply this
by −1 to ensure the ‘low-value low-risk’ interpretation).

2. Else if a model returns a response prediction then we set crank = -response.
3. Else if a model returns a lp prediction then we set crank = lp (or crank = -lp

if needed).
4. Else if a model returns a distr prediction then we set crank as the sum of the

cumulative hazard function (see R. Sonabend, Bender, and Vollmer (2022) for
full discussion as to why we picked this method).

13.2.4.2 Explicit Composition and Pipelines

At the start of this section, we mentioned that it is possible to transform prediction types
between each other. In mlr3proba this is possible with ‘compositor’ pipelines (Chapter 7).
There are several pipelines implemented in the package but three in particular focus on
predict type transformation:

1. pipeline_crankcompositor() – Transforms a "distr" prediction to "crank"
2. pipeline_distrcompositor() – Transforms a "lp" prediction to "distr"

https://mlr3proba.mlr-org.com/reference/mlr_graphs_crankcompositor.html
https://mlr3proba.mlr-org.com/reference/mlr_graphs_distrcompositor.html
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3. pipeline_responsecompositor() – Transforms a "distr" prediction to
"response" (survival time)

We internally use a version of the first pipeline whenever we return predictions from survival
models so that every model has a "crank" prediction type - so only use the first pipeline
to overwrite these ranking predictions. In practice, the second pipeline is more common
as Cox or Accelerated Failure Time (AFT) type models always return a linear predictor
("lp"), but sometimes the internal predict() functions don’t provide a transformation to
a survival distribution prediction ("distr"). The third pipeline summarizes the predicted
survival curves to a single number (expected survival time), and as previously mentioned,
are rarely useful for evaluating the performance of survival machine learning models.

In the example below we load the rats dataset, remove factor columns, and then partition
the data into training and testing. We construct the distrcompositor pipeline around a
survival XGBoost Accelerated Failure Time (AFT) learner (lrn("surv.xgboost.aft"))
which by default makes predictions for "lp", "crank" and "response". In the pipeline,
we specify that we will estimate the baseline distribution with a Kaplan-Meier estimator
(estimator = "kaplan") and that we want to assume an AFT form for our estimated
distribution (form = "aft"). We then train and predict in the usual way and in our output
we can now see a distr prediction.

library(mlr3verse)
library(mlr3extralearners)

tsk_rats = tsk("rats")$select(c("litter", "rx"))
split = partition(tsk_rats)

learner = lrn("surv.xgboost.aft", nrounds = 10)

# no distr output
learner$train(tsk_rats, split$train)$predict(tsk_rats, split$test)

<PredictionSurv> for 99 observations:
row_ids time status crank lp response

1 101 FALSE -4.648 -4.648 104.3
6 102 FALSE -5.576 -5.576 264.1
9 104 FALSE -5.576 -5.576 264.1

--- --- --- --- --- ---
294 64 FALSE -4.754 -4.754 116.0
295 104 FALSE -4.661 -4.661 105.8
296 104 FALSE -4.661 -4.661 105.8

graph_learner = ppl(
"distrcompositor",
learner = learner,
estimator = "kaplan",
form = "aft",
graph_learner = TRUE

)

https://mlr3proba.mlr-org.com/reference/mlr_graphs_responsecompositor.html
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# now with distr
graph_learner$train(tsk_rats, split$train)$predict(tsk_rats, split$test)

<PredictionSurv> for 99 observations:
row_ids time status crank lp response distr

1 101 FALSE -4.648 -4.648 104.3 <list[1]>
6 102 FALSE -5.576 -5.576 264.1 <list[1]>
9 104 FALSE -5.576 -5.576 264.1 <list[1]>

--- --- --- --- --- --- ---
294 64 FALSE -4.754 -4.754 116.0 <list[1]>
295 104 FALSE -4.661 -4.661 105.8 <list[1]>
296 104 FALSE -4.661 -4.661 105.8 <list[1]>

Mathematically, we have done the following:

1. Assume our estimated distribution will have the form 𝑆(𝑡) = 𝑆0( 𝑡
exp(𝜂) ) where 𝑆

is the survival function, 𝑆0 is the baseline survival function and 𝜂 is the linear
predictor.

2. Estimate ̂𝜂 prediction using XGBoost
3. Estimate ̂𝑆0(𝑡) with the Kaplan-Meier estimator
4. Put this all together as 𝑆(𝑡) = ̂𝑆0( 𝑡

exp(𝜂̂) )

For more detail about prediction types and composition we recommend Kalbfleisch and
Prentice (2011).

13.2.5 Putting It All Together
Finally, we will put all the above into practice in a small benchmark experiment. We first
load tsk("grace") (which only has numeric features) and sample 500 rows randomly. We
then select the ISBS, D-Calibration, and C-index to evaluate predictions, set up the same
pipeline we used in the previous experiment, and load a Cox PH and Kaplan-Meier estimator.
We run our experiment with three-fold CV and aggregate the results.

set.seed(42)
library(mlr3extralearners)

tsk_grace = tsk("grace")
tsk_grace$filter(sample(tsk_grace$nrow, 500))
msr_txt = c("surv.graf", "surv.cindex", "surv.dcalib")
measures = msrs(msr_txt)

graph_learner = ppl(
"distrcompositor",
learner = lrn("surv.xgboost.aft", nrounds = 10),
estimator = "kaplan",
form = "aft",
graph_learner = TRUE,
scale_lp = TRUE

)
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graph_learner$id = "XGBoost-AFT"
learners = c(lrns(c("surv.coxph", "surv.kaplan")), graph_learner)

bmr = benchmark(benchmark_grid(tsk_grace, learners,
rsmp("cv", folds = 3)))

bmr$aggregate(measures)[, c("learner_id", ..msr_txt)]

learner_id surv.graf surv.cindex surv.dcalib
1: surv.coxph 0.1005 0.8303 6.093
2: surv.kaplan 0.2029 0.5000 3.089
3: XGBoost-AFT 0.2148 0.8464 6.460

In this small experiment, XGBoost-AFT and Cox PH have the best discrimination, the
Kaplan-Meier baseline has the best calibration, and Cox PH has the best overall predictive
accuracy (with the lowest ISBS).

13.3 Density Estimation
Density estimation is a learning task to estimate the unknown distribution from which
a univariate dataset is generated or put more simply to estimate the probability density
(or mass) function for a single variable. As with survival analysis, density estimation is
implemented in mlr3proba, as both can make probability distribution predictions (hence
the name “mlr3probabilistic”). Unconditional density estimation (i.e. estimation of a target
without any covariates) is viewed as an unsupervised task, which means the ‘truth’ is never
known. For a good overview of density estimation see Silverman (1986).

The package mlr3proba extends mlr3 with the following objects for density estimation:

• TaskDens to define density tasks.
• LearnerDens as the base class for density estimators.
• PredictionDens for density predictions.
• MeasureDens as a specialized class for density performance measures.

We will consider each in turn.

13.3.1 TaskDens
As density estimation is an unsupervised task, there is no target for prediction. In the
code below we construct a density task using as_task_dens() which takes one argument,
a data.frame type object with exactly one column (which we will use to estimate the
underlying distribution).

tsk_dens = as_task_dens(data.table(x = rnorm(1000)))
tsk_dens

<TaskDens:data.table(x = rnorm(1000))> (1000 x 1)
* Target: -
* Properties: -
* Features (1):

https://mlr3proba.mlr-org.com/reference/TaskDens.html
https://mlr3proba.mlr-org.com/reference/LearnerDens.html
https://mlr3proba.mlr-org.com/reference/PredictionDens.html
https://mlr3proba.mlr-org.com/reference/MeasureDens.html
https://mlr3proba.mlr-org.com/reference/as_task_dens.html


Density Estimation 299

- dbl (1): x

As with other tasks, we have included a couple of tasks that come shipped with mlr3proba:

as.data.table(mlr_tasks)[task_type == "dens", c(1:2, 4:5)]

key label nrow ncol
1: faithful Old Faithful Eruptions 272 1
2: precip Annual Precipitation 70 1

13.3.2 LearnerDens and PredictionDens
Density learners may return the following prediction types:

1. distr – probability distribution
2. pdf – probability density function
3. cdf – cumulative distribution function

All learners will return a distr and pdf prediction but only some can make cdf predictions.
Again, the distr predict type is implemented using distr6. In the code below we train and
‘predict’ with a histogram learner and then plot the estimated probability density function
(Figure 13.4), which closely matches the underlying Normally-distributed data.

lrn_hist = lrn("dens.hist")
prediction = lrn_hist$train(tsk_dens, 1:900)$predict(tsk_dens, 901:1000)
x = seq.int(-2, 2, 0.01)
df = data.frame(x = x, y = prediction$distr$pdf(x))
ggplot(df, aes(x = x, y = y)) + geom_line() + theme_minimal()
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Figure 13.4: Predicted density from the histogram learner, which closely resembles the
underlying N(0, 1) data.
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The pdf and cdf predict types are simply wrappers around distr$pdf and distr$cdf
respectively:

prediction = lrn_hist$train(tsk_dens, 1:10)$predict(tsk_dens, 11:13)
# pdf and cdf columns in output
prediction

<PredictionDens> for 3 observations:
row_ids pdf cdf

11 0.6 0.4849
12 0.2 0.3992
13 0.6 0.6208

1 variable(s) not shown: [distr]

# comparing cdf from prediction to $cdf method from distr
cbind(prediction$distr$cdf(tsk_dens$data()$x[11:13]),
prediction$cdf[1:3])

[,1] [,2]
[1,] 0.4849 0.4849
[2,] 0.3992 0.3992
[3,] 0.6208 0.6208

13.3.3 MeasureDens and Putting It All Together
At the time of publication, the only measure implemented in mlr3proba for density estima-
tion is logloss, which is defined in the same way as in classification, 𝐿(𝑦) = − log( ̂𝑓𝑌 (𝑦)),
where ̂𝑓𝑌 is our estimated probability density function. Putting this together with the above
we are now ready to train a density learner, estimate a distribution, and evaluate our esti-
mation:

msr_logloss = msr("dens.logloss")
msr_logloss

<MeasureDensLogloss:dens.logloss>: Log Loss
* Packages: mlr3, mlr3proba
* Range: [0, Inf]
* Minimize: TRUE
* Average: macro
* Parameters: eps=1e-15
* Properties: -
* Predict type: pdf

prediction$score(msr_logloss)

dens.logloss
0.877

This output is most easily interpreted when compared to other learners in a benchmark
experiment, so let us put everything together to conduct a small benchmark study on
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tsk("faithful") task using some of the integrated density learners:

library(mlr3extralearners)
tsk_faithful = tsk("faithful")
learners = lrns(c("dens.hist", "dens.pen", "dens.kde"))
measure = msr("dens.logloss")
bmr = benchmark(benchmark_grid(tsk_faithful, learners,
rsmp("cv", folds = 3)))

bmr$aggregate(measure)

autoplot(bmr, measure = measure)
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Figure 13.5: Three boxplots comparing performance of dens.hist, dens.pen, and dens.kde
on tsk("faithful").

The results (Figure 13.5) of this experiment indicate that the sophisticated Penalized Den-
sity Estimator does not outperform the baseline histogram, but the Kernel Density Estima-
tor has at least consistently better (i.e. lower) logloss results.

13.4 Cluster Analysis
Cluster analysis is another unsupervised task implemented in mlr3. The objective of cluster
analysis is to group data into clusters, where each cluster contains similar observations.
The similarity is based on specified metrics that are task and application-dependent. Unlike
classification where we try to predict a class for each observation, in cluster analysis there
is no ‘true’ label or class to predict.

The package mlr3cluster extends mlr3 with the following objects for cluster analysis:

https://mlr3cluster.mlr-org.com
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• TaskClust to define clustering tasks
• LearnerClust as the base class for clustering learners
• PredictionClust as the specialized class for Prediction objects
• MeasureClust as the specialized class for performance measures

We will consider each in turn.

13.4.1 TaskClust
Similarly to density estimation (Section 13.3), there is no target for prediction and so no
truth field in TaskClust. By example, we will look at the ruspini dataset, which has 75
rows and two columns and was first introduced in Ruspini (1970) to illustrate different clus-
tering techniques. The observations in the dataset form four natural clusters (Figure 13.6).
In the code below we construct a cluster task using as_task_clust() which only takes one
argument, a data.frame type object.

library(mlr3verse)
library(cluster)
tsk_ruspini = as_task_clust(ruspini)
tsk_ruspini

<TaskClust:ruspini> (75 x 2)
* Target: -
* Properties: -
* Features (2):
- int (2): x, y

tsk_ruspini$data(1:3) # print first 3 rows

x y
1: 4 53
2: 5 63
3: 10 59

autoplot(tsk_ruspini)

https://mlr3cluster.mlr-org.com/reference/TaskClust.html
https://mlr3cluster.mlr-org.com/reference/LearnerClust.html
https://mlr3cluster.mlr-org.com/reference/PredictionClust.html
https://mlr3.mlr-org.com/reference/Prediction.html
https://mlr3cluster.mlr-org.com/reference/MeasureClust.html
https://mlr3cluster.mlr-org.com/reference/TaskClust.html
https://www.rdocumentation.org/packages/cluster/topics/ruspini
https://mlr3cluster.mlr-org.com/reference/as_task_clust.html
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Figure 13.6: Distribution of the ruspini dataset.

Technically, we did not need to create a new task for the ruspini dataset since it is already
included in the package, along with one other task:

as.data.table(mlr_tasks)[task_type == "clust", c(1:2, 4:5)]

key label nrow ncol
1: ruspini Ruspini 75 2
2: usarrests US Arrests 50 4

13.4.2 LearnerClust and PredictionClust
As with density estimation, we refer to training and predicting for clustering to be
consistent with the mlr3 interface, but strictly speaking, this should be clustering and
assigning (the latter we will return to shortly). Two predict_types are available for
clustering learners:

1. "partition" – Estimate of which cluster an observation falls into
2. "prob" – Probability of an observation belonging to each cluster

Similarly to classification, prediction types of clustering learners are either deterministic
("partition") or probabilistic ("prob").

Below we construct a C-Means clustering learner with "prob" prediction type and three
clusters (centers = 3), train it on the ruspini dataset and then return the cluster assign-
ments ($assignments) for six random observations.

lrn_cmeans = lrn("clust.cmeans", predict_type = "prob", centers = 3)
lrn_cmeans
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<LearnerClustCMeans:clust.cmeans>: Fuzzy C-Means Clustering Learner
* Model: -
* Parameters: centers=3
* Packages: mlr3, mlr3cluster, e1071
* Predict Types: partition, [prob]
* Feature Types: logical, integer, numeric
* Properties: complete, fuzzy, partitional

lrn_cmeans$train(tsk_ruspini)
lrn_cmeans$assignments[sample(tsk_ruspini$nrow, 6)]

[1] 1 1 1 3 1 1

As clustering is unsupervised, it often does not make sense to use predict for new data
however this is still possible using the mlr3 interface.

# using different data for estimation (rare use case)
lrn_cmeans$train(tsk_ruspini, 1:30)$predict(tsk_ruspini, 31:32)

<PredictionClust> for 2 observations:
row_ids partition prob.1 prob.2 prob.3

31 2 0.2750 0.7167 0.008326
32 2 0.3724 0.6212 0.006467

# using same data as for estimation (common use case)
prediction = lrn_cmeans$train(tsk_ruspini)$predict(tsk_ruspini)
autoplot(prediction, tsk_ruspini)
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Figure 13.7: Distribution of the estimated clusters.

While two prediction types are possible, there are some learners where ‘prediction’ can never
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make sense, for example in hierarchical clustering Hierarchical
Clustering

. In hierarchical clustering, the goal is to
build a hierarchy of nested clusters by either splitting large clusters into smaller ones or
merging smaller clusters into bigger ones. The final result is a tree or dendrogram which
can change if a new data point is added. For consistency, mlr3cluster offers a predict
method for hierarchical clusters but with a warning:

lrn_hclust = lrn("clust.hclust", k = 2)
lrn_hclust$train(tsk_ruspini)$predict(tsk_ruspini)

Warning: Learner 'clust.hclust' doesn't predict on new data and
predictions may not make sense on new data.

<PredictionClust> for 75 observations:
row_ids partition

1 1
2 1
3 1

--- ---
73 1
74 1
75 1

autoplot(lrn_hclust) + theme(axis.text = element_text(size = 5.5))
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Figure 13.8: Dendrogram representing hierarchical clustering of the ruspini dataset. y-axis
is similarity of points such that the lower observations (x-axis) are connected, the greater
their similarity. The top split represents the separation of the two clusters.

In this case, the predict method simply cuts the dendrogram into the number of clusters
specified by k parameter of the learner.
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13.4.3 MeasureClust
As previously discussed, unsupervised tasks do not have ground truth data to compare to
in model evaluation. However, we can still measure the quality of cluster assignments by
quantifying how closely objects within the same cluster are related (cluster cohesion) as well
as how distinct different clusters are from each other (cluster separation). There are a few
built-in evaluation metrics available to assess the quality of clustering, which can be found
by searching the mlr_measures dictionary.

Two common measures are the within sum of squares (WSS) measure (msr("clust.wss"))
and the silhouette coefficient (msr("clust.silhouette")). WSS calculates the sum of
squared differences between observations and centroids, which is a quantification of cluster
cohesion (smaller values indicate the clusters are more compact). The silhouette coefficient
quantifies how well each point belongs to its assigned cluster versus neighboring clusters,
where scores closer to 1 indicate well clustered and scores closer to -1 indicate poorly clus-
tered. Note that the silhouette measure in mlr3cluster returns the mean silhouette score
across all observations and when there is only a single cluster, the measure simply outputs
0.

Putting this together with the above we can now score our cluster estimation (note we must
pass the task to $score):

measures = msrs(c("clust.wss", "clust.silhouette"))

prediction$score(measures, task = tsk_ruspini)

clust.wss clust.silhouette
5.116e+04 6.414e-01

The very high WSS and middling mean silhouette coefficient indicate that our clusters could
do with a bit more work.

Often reducing an unsupervised task to a quantitative measure may not be useful (given no
ground truth) and instead visualization (discussed next) may be a more effective tool for
assessing the quality of the clusters.

13.4.4 Visualization
As clustering is an unsupervised task, visualization can be essential not just for ‘evaluating’
models but also for determining if our learners are performing as expected for our task. This
section will look at visualizations for supporting clustering choices and following that we
will consider plots for evaluating model performance.

13.4.4.1 Visualizing Clusters

It is easy to rely on clustering measures to assess the quality of clustering however this
should be done with care as choosing between models may come down to other decisions
such as how clusters are formed. By example, consider data generated by mlbench.spirals,
which results in two individual lines that spiral around each other (Figure 13.9).

spirals = mlbench::mlbench.spirals(n = 300, sd = 0.01)
tsk_spirals = as_task_clust(as.data.frame(spirals$x))

https://mlr3.mlr-org.com/reference/mlr_measures.html
https://www.rdocumentation.org/packages/mlbench/topics/mlbench.spirals
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autoplot(tsk_spirals)
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Figure 13.9: Distribution of spirals data.

Now let us see what happens when fit two clustering learners on this data:

learners = list(
lrn("clust.kmeans"),
lrn("clust.dbscan", eps = 0.1)

)

bmr = benchmark(benchmark_grid(tsk_spirals, learners, rsmp("insample")))
bmr$aggregate(msr("clust.silhouette"))[, c(4, 7)]

learner_id clust.silhouette
1: clust.kmeans 0.37283
2: clust.dbscan 0.02932

We can see that K-means clustering gives us a higher average silhouette score and so we
might conclude that a K-means learner with two centroids is a better choice than the
DBSCAN method. However, now take a look at the cluster assignment plots in Figure 13.10
(autoplot.PredictionClust is available but we do not use it here so we can highlight two
particular plots).

library(patchwork)
# get K-Means and DBSCAN partitions
pred_kmeans = as.factor(bmr$resample_result(1)$prediction()$partition)
pred_dbscan = as.factor(bmr$resample_result(2)$prediction()$partition)
# plot
df_kmeans = cbind(tsk_spirals$data(), clust = pred_kmeans)
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df_dbscan = cbind(tsk_spirals$data(), clust = pred_dbscan)
map = aes(x = V1, y = V2, color = clust)
p_kmeans = ggplot(df_kmeans, map) + ggtitle("K-means")
p_dbscan = ggplot(df_dbscan, map) + ggtitle("DBSCAN")

p_kmeans + p_dbscan + plot_layout(guides = "collect") & geom_point() &
theme_minimal() & ggplot2::scale_colour_viridis_d(end = 0.8)
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Figure 13.10: Comparing estimated clusters from lrn("clust.kmeans") and
lrn("clust.dbscan"). Both create two distinct clusters that are separated in differ-
ent ways.

The two learners arrived at two different results to cleanly separate clusters – the K-means
algorithm assigned points that are part of the same line into two different clusters whereas
DBSCAN assigned each line to its own cluster. Which one of these approaches is correct?
The answer is it depends on your specific task and the goal of cluster analysis. If we had only
relied on the silhouette score, then the details of how the clustering was performed would
have been masked and we would have been unable to decide which method was appropriate
for the task.

13.4.4.2 PCA and Silhouette Plots

The two most important plots implemented in mlr3viz to support the evaluation of cluster
learners are PCA and silhouette plots.

Principal components analysis (PCA) is a commonly used dimension reduction method in
ML to reduce the number of variables in a dataset or to visualize the most important ‘compo-
nents’, which are linear transformations of the dataset features. Components are considered
more important if they have higher variance (and therefore more predictive power). In the
context of clustering, by plotting observations against the first two components, and then
coloring them by cluster, we could visualize our high-dimensional dataset and we would

https://mlr3viz.mlr-org.com
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expect to see observations in distinct groups.

Since our running example only has two features, PCA does not make sense to visualize
the data. So we will use a task based on the USArrests dataset instead. By plotting the
result of PCA (Figure 13.11), we see that our model has done a good job of separating
observations into two clusters along the first two principal components.

tsk_usarrests = tsk("usarrests")
prediction = lrn("clust.kmeans")$train(tsk_usarrests)$
predict(tsk_usarrests)

autoplot(prediction, tsk_usarrests, type = "pca")
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Figure 13.11: First two principal components using PCA on tsk("usarrests").

Silhouette plots visually assess the quality of the estimated clusters by visualizing if ob-
servations in a cluster are well-placed both individually and as a group. The plots include
a dotted line which visualizes the average silhouette coefficient across all data points and
each data point’s silhouette value is represented by a bar colored by their assigned cluster.
In our particular case, the average silhouette index is 0.59. If the average silhouette value
for a given cluster is below the average silhouette coefficient line then this implies that the
cluster is not well defined.

Continuing with our new example, we find (Figure 13.12) that a lot of observations are
actually below the average line and close to zero, and therefore the quality of our cluster
assignments is not very good, meaning that many observations are likely assigned to the
wrong cluster.

autoplot(prediction, tsk_usarrests, type = "sil")
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Figure 13.12: Silhouette plot from predictions made by lrn("clust.kmeans") on
tsk("usarrests").

13.4.5 Putting It All Together
Finally, we conduct a small benchmark study using tsk("usarrests") and a few integrated
cluster learners:

tsk_usarrests = tsk("usarrests")
learners = list(
lrn("clust.featureless"),
lrn("clust.kmeans", centers = 4L),
lrn("clust.cmeans", centers = 3L)

)
measures = list(msr("clust.wss"), msr("clust.silhouette"))
bmr = benchmark(benchmark_grid(tsk_usarrests, learners,
rsmp("insample")))

bmr$aggregate(measures)[, c(4, 7, 8)]

learner_id clust.wss clust.silhouette
1: clust.featureless 355808 0.0000
2: clust.kmeans 37653 0.4774
3: clust.cmeans 47964 0.5319

The C-means and K-means algorithms are both considerably better than the featureless
baseline but further analysis (and visualizations) would be required to decide which of
those two is suitable for our needs.
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13.5 Spatial Analysis
The final task we will discuss in this book is spatial analysis. Spatial analysis can be a
subset of any other machine learning task (e.g., regression or classification) and is defined
by the presence of spatial information in a dataset, usually stored as coordinates that are
often named “x” and “y” or “lat” and “lon” (for ‘latitude’ and ‘longitude’ respectively.)

Spatial analysis is its own task as spatial data must be handled carefully due to the complex-
ity of ‘autocorrelation’. Where correlation is defined as a statistical association between two
variables, autocorrelation Autocorrela-

tion
is a statistical association within one variable. In ML terms, in a

dataset with features and observations, correlation occurs when two or more features are
statistically associated in some way, whereas autocorrelation occurs when two or more ob-
servations are statistically associated across one feature. Autocorrelation, therefore, violates
one of the fundamental assumptions of ML that all observations in a dataset are indepen-
dent, which results in lower confidence about the quality of a trained machine learning
model and the resulting performance estimates (Hastie, Friedman, and Tibshirani 2001).

Autocorrelation is present in spatial data as there is implicit information encoded in coordi-
nates, such as whether two observations (e.g., cities, countries, continents) are close together
or far apart. By example, let us imagine we are predicting the number of cases of a disease
two months after an outbreak in Germany (Figure 13.13). Outbreaks radiate outwards from
an epicenter and therefore countries closer to Germany will have higher numbers of cases
and countries further away will have lower numbers (Figure 13.13, bottom). Thus, looking
at the data spatially shows clear signs of autocorrelation across nearby observations. Note
in this example the autocorrelation is radial but in practice, this will not always be the case.

Unlike other tasks we have looked at in this chapter, there is no underlying difference
between the implemented learners or measures. Instead, we provide additional resampling
methods in mlr3spatiotempcv to account for the similarity in the train and test sets during
resampling that originates from spatiotemporal autocorrelation.

Throughout this section we will use the ecuador dataset and task as a working example.

13.5.1 TaskClassifST and TaskRegrST
To make use of spatial resampling methods, we have implemented two extensions of
TaskClassif and TaskRegr to accommodate spatial data, TaskClassifST and TaskRegrST
respectively. Below we only show classification examples but regression follows trivially.

library(mlr3spatial)
library(mlr3spatiotempcv)

# create task from `data.frame`
tsk_ecuador = as_task_classif_st(ecuador, id = "ecuador_task",
target = "slides", positive = "TRUE",
coordinate_names = c("x", "y"), crs = "32717")

# or create task from 'sf' object
data_sf = sf::st_as_sf(ecuador, coords = c("x", "y"), crs = "32717")
tsk_ecuador = as_task_classif_st(data_sf, target = "slides",

https://mlr3spatiotempcv.mlr-org.com
https://mlr3spatiotempcv.mlr-org.com/reference/ecuador.html
https://mlr3.mlr-org.com/reference/TaskClassif.html
https://mlr3.mlr-org.com/reference/TaskRegr.html
https://mlr3spatiotempcv.mlr-org.com/reference/TaskClassifST.html
https://mlr3spatiotempcv.mlr-org.com/reference/TaskRegrST.html
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Figure 13.13: Heatmaps where darker countries indicate higher number of cases and lighter
countries indicate lower number of cases of imaginary Disease X with epicenter in Germany.
The top map imagines a world in which there is no spatial autocorrelation and the number
of cases of a disease is randomly distributed. The bottom map shows a more accurate world
in which the number of cases radiate outwards from the epicenter (Germany).
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positive = "TRUE")
tsk_ecuador

<TaskClassifST:data_sf> (751 x 11)
* Target: slides
* Properties: twoclass
* Features (10):
- dbl (10): carea, cslope, dem, distdeforest, distroad,

distslidespast, hcurv, log.carea, slope, vcurv
* Coordinates:

X Y
1: 712882 9560002
2: 715232 9559582
3: 715392 9560172
4: 715042 9559312
5: 715382 9560142
---
747: 714472 9558482
748: 713142 9560992
749: 713322 9560562
750: 715392 9557932
751: 713802 9560862

Once a task is created, you can train and predict as normal.

lrn("classif.rpart")$train(tsk_ecuador)$predict(tsk_ecuador)

<PredictionClassif> for 751 observations:
row_ids truth response

1 TRUE TRUE
2 TRUE TRUE
3 TRUE TRUE

--- --- ---
749 FALSE FALSE
750 FALSE FALSE
751 FALSE TRUE

However as discussed above, it is best to use the specialized resampling methods to achieve
bias-reduced estimates of model performance.

13.5.2 Spatiotemporal Cross-Validation
Before we look at the spatial resampling methods implemented in mlr3spatiotempcv we
will first show what can go wrong if non-spatial resampling methods are used for spatial
data. Below we benchmark a decision tree on tsk("ecuador") using two different repeated
cross-validation resampling methods, the first (“NSpCV” (non-spatial cross-validation)) is
a non-spatial resampling method from mlr3, the second (“SpCV” (spatial cross-validation))
is from mlr3spatiotempcv and is optimized for spatial data. The example highlights how
“NSpCV” makes it appear as if the decision tree is performing better than it is with con-
siderably higher estimated performance, however, this is an overconfident prediction due to
the autocorrelation in the data.
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lrn_rpart = lrn("classif.rpart", predict_type = "prob")
rsmp_nsp = rsmp("repeated_cv", folds = 3, repeats = 2, id = "NSpCV")
rsmp_sp = rsmp("repeated_spcv_coords", folds = 3, repeats = 2,
id = "SpCV")

design = benchmark_grid(tsk_ecuador, lrn_rpart, c(rsmp_nsp, rsmp_sp))
bmr = benchmark(design)
bmr$aggregate(msr("classif.acc"))[, c(5, 7)]

resampling_id classif.acc
1: NSpCV 0.6864
2: SpCV 0.5842

In the above example, applying non-spatial resampling results in train and test sets that
are very similar due to the underlying spatial autocorrelation. Hence there is little differ-
ence from testing a model on the same data it was trained on, which should be avoided for
an honest performance result (see Chapter 2). In contrast, the spatial method has accom-
modated autocorrelation and the test data is less correlated (though some association will
remain) with the training data. Visually this can be seen using autoplot() methods. In
Figure 13.14 we visualize how the task is partitioned according to the spatial resampling
method (Figure 13.14, left) and non-spatial resampling method (Figure 13.14, right). There
is a clear separation in space for the respective partitions when using the spatial resampling
whereas the train and test splits overlap a lot (and are therefore more correlated) using the
non-spatial method.

library(patchwork)

(autoplot(rsmp_sp, tsk_ecuador, fold_id = 1, size = 0.7) +
ggtitle("Spatial Resampling") +
autoplot(rsmp_nsp, tsk_ecuador, fold_id = 1, size = 0.7) +
ggtitle("Non-spatial Resampling")) +
plot_layout(guides = "collect") &
theme_minimal() &
theme(axis.text = element_text(size = 4), legend.position = "bottom")

https://mlr3spatiotempcv.mlr-org.com/reference/autoplot.html
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Figure 13.14: Scatterplots show separation of train (blue) and test (orange) data for the
first fold of the first repetition of the cross-validation. Left is spatial resampling where train
and test data are clearly separated. Right is non-spatial resampling where there is overlap
in train and test data.

Now we have seen why spatial resampling matters we can take a look at what methods are
available in mlr3spatiotempcv. The resampling methods we have added can be categorized
into:

• Blocking – Create rectangular blocks in 2D or 3D space
• Buffering – Create buffering zones to remove observations between train and test sets
• Spatiotemporal clustering – Clusters based on coordinates (and/or time points)
• Feature space clustering – Clusters based on feature space and not necessarily spatiotem-

poral
• Custom (partitioning) – Grouped by factor variables

The choice of method may depend on specific characteristics of the dataset and there is no
easy rule to pick one method over another, full details of different methods can be found
in Schratz et al. (2021) – the paper deliberately avoids recommending one method over
another as the ‘optimal’ choice is highly dependent on the predictive task, autocorrelation
in the data, and the spatial structure of the sampling design. The documentation for each
of the implemented methods includes details of each method as well as references to original
publications.

Spatiotemporal Resampling

We have focused on spatial analysis but referred to “spatiotemporal” and “spatiotemp”.
The spatial-only resampling methods discussed in this section can be extended to
temporal analysis (or spatial and temporal analysis combined) by setting the "time"
col_role in the task (Section 2.6) – this is an advanced topic that may be added
in future editions of this book. See the mlr3spatiotempcv visualization vignette at
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https://mlr3spatiotempcv.mlr-org.com/articles/spatiotemp-viz.html for specific
details about 3D spatiotemporal visualization.

13.5.3 Spatial Prediction
Until now we have looked at resampling to accommodate spatiotemporal features, but what
if you want to make spatiotemporal predictions? In this case, the goal is to make classifica-
tion or regression predictions at the pixel level, i.e., for an area, defined by the geometric
resolution, of a raster image.

To enable these predictions we have created a new function, predict_spatial(), to allow
spatial predictions using any of the following spatial data classes:

• stars (from package stars)
• SpatRaster (from package terra)
• RasterLayer (from package raster)
• RasterStack (from package raster)

In the example below we load the leipzig_points dataset for training and coerce this to
a spatiotemporal task with as_task_classif_st, and we load the leipzig_raster raster.
Both files are included as example data in mlr3spatial.

library(mlr3spatial)
library(sf)
library(terra, exclude = "resample")

# load sample points
leipzig_vector = sf::read_sf(system.file("extdata",
"leipzig_points.gpkg", package = "mlr3spatial"),
stringsAsFactors = TRUE)

# create training data
tsk_leipzig = as_task_classif_st(leipzig_vector, target = "land_cover")

# load raster image
leipzig_raster = terra::rast(system.file("extdata", "leipzig_raster.tif",
package = "mlr3spatial"))

Now we can continue as normal to train and predict with a classification learner, in this
case, a random forest.

lrn_ranger = lrn("classif.ranger")$train(tsk_leipzig)
prediction = predict_spatial(leipzig_raster, lrn_ranger,
format = "terra")

Warning in warn_deprecated("DataBackend$data_formats"):
DataBackend$data_formats is deprecated and will be removed in the
future.

prediction

class : SpatRaster

https://mlr3spatiotempcv.mlr-org.com/articles/spatiotemp-viz.html
https://mlr3spatial.mlr-org.com/reference/predict_spatial.html
https://cran.r-project.org/package=stars
https://cran.r-project.org/package=terra
https://cran.r-project.org/package=raster
https://cran.r-project.org/package=raster
https://mlr3spatiotempcv.mlr-org.com/reference/as_task_classif_st.html
https://mlr3spatial.mlr-org.com
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dimensions : 206, 154, 1 (nrow, ncol, nlyr)
resolution : 10, 10 (x, y)
extent : 731810, 733350, 5692030, 5694090 (xmin, xmax, ymin, ymax)
coord. ref. : WGS 84 / UTM zone 32N (EPSG:32632)
source : file13f43caa78c5.tif
categories : categories
name : land_cover
min value : forest
max value : water

In this example, we specified the creation of a terra object, which can be visualized with
in-built plotting methods.

plot(prediction, col = c("#440154FF", "#443A83FF", "#31688EFF",
"#21908CFF", "#35B779FF", "#8FD744FF", "#FDE725FF"))
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Figure 13.15: Spatial predictions for forest (purple), pasture (blue), urban (green), and
water (yellow) categories.
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13.6 Conclusion
In this chapter, we explored going beyond regression and classification to see how classes
in mlr3 can be used to implement other ML tasks. Cost-sensitive classification extends the
‘normal’ classification setting by assuming that costs associated with false negatives and false
positives are unequal. Running cost-sensitive classification experiments is possible using only
features in mlr3. Survival analysis, available in mlr3proba, can be thought of as a regression
problem when the outcome may be censored, which means it may never be observed within
a given time frame. The final task in mlr3proba is density estimation, the unsupervised task
concerned with estimating univariate probability distributions. Using mlr3cluster, you can
perform cluster analysis on observations, which involves grouping observations according
to similarities in their variables. Finally, with mlr3spatial and mlr3spatiotempcv, it is
possible to perform spatial analysis to make predictions using coordinates as features and
to make spatial predictions. The mlr3 interface is highly extensible, which means future ML
tasks can (and will) be added to our universe and we will add these to this chapter of the
book in future editions.

Table 13.2: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor/Function Fields/Methods
MeasureClassifCosts msr("classif.costs") -
PipeOpTuneThreshold po("tunethreshold") -
TaskSurv as_task_surv() $data()
PipeOpDistrCompositor po("distrcompose") -
TaskDens as_task_dens() $data()
TaskClust as_task_clust() $data()
TaskClassifST as_task_classif_st() $data()
- predict_spatial()

13.7 Exercises
1. Run a benchmark experiment on tsk("german_credit") with

lrn("classif.featureless"), lrn("classif.log_reg"), and
lrn("classif.ranger"). Tune the prediction thresholds of all learners by
encapsulating them in a po("learner_cv") (with two-fold CV), followed by a
po("tunethreshold"). Use msr("classif.costs", costs = costs), where
the costs matrix is as follows: true positive is -10, true negative is -1, false
positive is 2, and false negative is 3. Use this measure in po("tunethreshold")
and when evaluating your benchmark experiment.

2. Train and test a survival forest using lrn("surv.rfsrc") (from
mlr3extralearners). Run this experiment using tsk("rats") and partition().
Evaluate your model with the RCLL measure.

3. Estimate the density of the “precip” task from the mlr3proba package using

https://mlr3proba.mlr-org.com
https://mlr3cluster.mlr-org.com
https://mlr3spatial.mlr-org.com
https://mlr3spatiotempcv.mlr-org.com
https://mlr3.mlr-org.com/reference/MeasureClassifCosts.html
https://mlr3pipelines.mlr-org.com/reference/PipeOpTuneThreshold.html
https://mlr3proba.mlr-org.com/reference/TaskSurv.html
https://mlr3proba.mlr-org.com/reference/as_task_surv.html
https://mlr3proba.mlr-org.com/reference/PipeOpDistrCompositor.html
https://mlr3proba.mlr-org.com/reference/TaskDens.html
https://mlr3proba.mlr-org.com/reference/as_task_dens.html
https://mlr3cluster.mlr-org.com/reference/TaskClust.html
https://mlr3cluster.mlr-org.com/reference/as_task_clust.html
https://mlr3spatiotempcv.mlr-org.com/reference/TaskClassifST.html
https://mlr3spatiotempcv.mlr-org.com/reference/as_task_classif_st.html
https://mlr3spatiotempcv.mlr-org.com/reference/predict_spatial.html
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lrn("dens.hist"), evaluate your estimation with the logloss measure. As a
stretch goal, look into the documentation of distr6 to learn how to analyse
your estimated distribution further.

4. Run a benchmark clustering experiment on the “wine” dataset without a label
column. Compare the performance of k-means learner with k equal to 2, 3 and 4
using the silhouette measure and the insample resampling technique. What value
of k would you choose based on the silhouette scores?
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In this chapter, we will explore algorithmic fairness in automated decision-making and how
we can build fair and unbiased (or at least less biased) predictive models. Methods to help
audit and resolve bias in mlr3 models are implemented in mlr3fairness. We will begin by
first discussing some of the theory behind algorithmic fairness and then show how this is
implemented in mlr3fairness.

Automated decision-making systems based on data-driven models are becoming increasingly
common but without proper auditing, these models may result in negative consequences for
individuals, especially those from underprivileged groups. The proliferation of such systems
in everyday life has made it important to address the potential for biases in these models.
As a real-world example, historical and sampling biases have led to better quality medical
data for patients from White ethnic groups when compared with other ethnic groups. If a
model is trained primarily on data from White patients, then the model may appear ‘good’
with respect to a given performance metric (e.g., classification error) when in fact the model
could simultaneously be making good predictions for White patients while making bad or
even harmful predictions for other patients (J. Huang et al. 2022). As ML-driven systems
are used for highly influential decisions, it is vital to develop capabilities to analyze and
assess these models not only with respect to their robustness and predictive performance
but also with respect to potential biases.

As we work through this chapter we will use the "adult_train" and "adult_test" tasks
from mlr3fairness, which contain a subset of the Adult dataset (Dua and Graff 2017).
This is a binary classification task to predict if an individual earns more than $50,000 per
year and is useful for demonstrating biases in data.

library(mlr3fairness)
tsk_adult_train = tsk("adult_train")
tsk_adult_train

<TaskClassif:adult_train> (30718 x 13)
* Target: target
* Properties: twoclass
* Features (12):
- fct (7): education, marital_status, occupation, race,

relationship, sex, workclass
- int (5): age, capital_gain, capital_loss, education_num,
hours_per_week

* Protected attribute: sex

321

https://mlr3.mlr-org.com
https://mlr3fairness.mlr-org.com
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14.1 Bias and Fairness
In the context of fairness, biasBias refers to disparities in how a model treats individuals or
groups. In this chapter, we will concentrate on a subset of bias definitions, those concern-
ing group fairnessGroup

Fairness
. For example, in the adult dataset, it can be seen that adults in the

group ‘Male’ are significantly more likely to earn a salary greater than $50K per year when
compared to the group ‘Female’.

sex_salary = table(tsk_adult_train$data(cols = c("sex", "target")))
round(proportions(sex_salary), 2)

target
sex <=50K >50K
Female 0.29 0.04
Male 0.46 0.21

chisq.test(sex_salary)

Pearson's Chi-squared test with Yates' continuity correction

data: sex_salary
X-squared = 1440, df = 1, p-value <2e-16

In this example, we would refer to the ‘sex’ variable as a sensitive attributeSensitive
Attribute

. The goal of
group fairness is then to ascertain if decisions are fair across groups defined by a sensitive
attribute. The sensitive attribute in a task is set with the "pta" (protected attribute)
column role (Section 2.6).

tsk_adult_train$set_col_roles("sex", add_to = "pta")

If more than one sensitive attribute is specified, then fairness will be based on observations at
the intersections of the specified groups. In this chapter we will only focus on group fairness,
however, one could also consider auditing individual fairness, which assesses fairness at an
individual level, and causal fairness, which incorporates causal relationships in the data
and propose metrics based on a directed acyclic graph (Barocas, Hardt, and Narayanan
2019; Mitchell et al. 2021). While we will only focus on metrics for binary classification
here, most metrics discussed naturally extend to more complex scenarios, such as multi-
class classification, regression, and survival analysis (Mehrabi et al. 2021; R. Sonabend et
al. 2022).

14.2 Group Fairness Notions
It is necessary to choose a notion of group fairness before selecting an appropriate fairness
metric to measure algorithmic bias.

Model predictions are said to be bias-transformingBias-
transforming

(Wachter, Mittelstadt, and Russell 2021),
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or to satisfy independence, if the predictions made by the model are independent of the
sensitive attribute. This group includes the concept of “Demographic Parity”, which tests
if the proportion of positive predictions (PPV) is equal across all groups. Bias-transforming
methods (i.e., those that test for independence) do not depend on labels and can help detect
biases arising from different base rates across populations.

A model is said to be bias-preserving Bias-
preserving

, or to satisfy separation, if the predictions made by
the model are independent of the sensitive attribute given the true label. In other words,
the model should make roughly the same amount of right/wrong predictions in each group.
Several metrics fall under this category, such as “equalized odds”, which tests if the TPR
and FPR is equal across groups. Bias-preserving metrics (which test for separation) test if
errors made by a model are equal across groups but might not account for bias in the labels
(e.g., if outcomes in the real world may be biased such as different rates of arrest for people
from different ethnic groups).

Choosing a fairness notion will depend on the model’s purpose and its societal context. For
example, if a model is being used to predict if a person is guilty of something then we might
want to focus on false positive or false discovery rates instead of true positives. Whichever
metric is chosen, we are essentially condensing systemic biases and prejudices into a few
numbers, and all metrics are limited with none being able to identify all biases that may
exist in the data. For example, if societal biases lead to disparities in an observed quantity
(such as school exam scores) for individuals with the same underlying ability, these metrics
may not identify existing biases.

To see these notions in practice, let 𝐴 be a binary sensitive group taking values 0 and 1 and
let 𝑀 be a fairness metric. Then to measure independence we would simply calculate the
difference between these values and test if the result is less than some threshold, 𝜖.

|Δ𝑀 | = |𝑀𝐴=0 − 𝑀𝐴=1| < 𝜖

If we used TPR as our metric 𝑀 then if |Δ𝑀 | > 𝜖 (e.g., 𝜖 = 0.05) we would conclude that
predictions from our model violate the equality of opportunity metric and do not satisfy
separation. If we chose accuracy or PPV for 𝑀 , then we would have concluded that the
model predictions do not satisfy independence.

In mlr3fairness we can construct a fairness metric from any Measure by construct-
ing msr("fairness", base_measure, range) with our metric of choice passed to
base_measure as well as the possible range the metric can take (i.e., the range in differences
possible based on the base measure):

fair_tpr = msr("fairness", base_measure = msr("classif.tpr"),
range = c(0, 1))

fair_tpr

<MeasureFairness:fairness.tpr>
* Packages: mlr3, mlr3fairness
* Range: [0, 1]
* Minimize: TRUE
* Average: macro
* Parameters: list()
* Properties: requires_task
* Predict type: response

https://mlr3.mlr-org.com/reference/Measure.html
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We have implemented several Measures in mlr3fairness that simplify this step for you,
these are named fairness.<base_measure>, for example for TPR: msr("fairness.tpr")
would run the same code as above.

14.3 Auditing a Model For Bias
With our sensitive attribute set and the fairness metric selected, we can now train a Learner
and test for bias. Below we use a random forest and evaluate the absolute difference in true
positive rate across groups ‘Male’ and ‘Female’:

tsk_adult_test = tsk("adult_test")
lrn_rpart = lrn("classif.rpart", predict_type = "prob")
prediction = lrn_rpart$train(tsk_adult_train)$predict(tsk_adult_test)
prediction$score(fair_tpr, tsk_adult_test)

fairness.tpr
0.06034

With an 𝜖 value of 0.05 we would conclude that there is bias present in our model, however,
this value of 𝜖 is arbitrary and should be decided based on context. As well as using fairness
metrics to evaluate a single model, they can also be used in larger benchmark experiments
to compare bias across multiple models.

Visualizations can also help better understand discrepancies between groups or differences
between models. fairness_prediction_density() plots the sub-group densities across
group levels and compare_metrics() scores predictions across multiple metrics:

library(patchwork)
library(ggplot2)

p1 = fairness_prediction_density(prediction, task = tsk_adult_test)
p2 = compare_metrics(prediction,
msrs(c("fairness.fpr", "fairness.tpr", "fairness.eod")),
task = tsk_adult_test

)

(p1 + p2) *
theme_minimal() *
scale_fill_viridis_d(end = 0.8, alpha = 0.8) *
theme(

axis.text.x = element_text(angle = 15, hjust = .7),
legend.position = "bottom"

)

https://mlr3.mlr-org.com/reference/Learner.html
https://mlr3fairness.mlr-org.com/reference/fairness_prediction_density.html
https://mlr3fairness.mlr-org.com/reference/compare_metrics.html
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Figure 14.1: Fairness prediction density plot (left) showing the density of predictions for the
positive class split by “Male” and “Female” individuals. The metrics comparison barplot
(right) displays the model’s scores across the specified metrics.

In this example (Figure 14.1), we can see the model is more likely to predict ‘Female’
observations as having a lower salary. This could be due to systemic prejudices seen in the
data, i.e., women are more likely to have lower salaries due to societal biases, or could be
due to bias introduced by the algorithm. As the right plot indicates that all fairness metrics
exceed 0.05, this supports the argument that the algorithm may have introduced further
bias (with the same caveat about the 0.05 threshold).

14.4 Fair Machine Learning
If we detect that our model is unfair, then a natural next step is to mitigate such biases.
mlr3fairness comes with several options to address biases in models, which broadly fall
into three categories (Caton and Haas 2020):

1. Preprocessing data – The underlying data is preprocessed in some way to address
bias in the data before it is passed to the Learner;

2. Employing fair models – Some algorithms can incorporate fairness considera-
tions directly, for example, generalized linear model with fairness constraints
(lrn("classif.fairzlrm")).

3. Postprocessing model predictions – Heuristics/algorithms are applied to the pre-
dictions to mitigate biases present in the predictions

All methods often slightly decrease predictive performance and it can therefore be useful to
try all approaches to empirically see which balance predictive performance and fairness. In
general, all biases should be addressed at their root cause (or as close to it) as possible as

https://mlr3.mlr-org.com/reference/Learner.html
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any other intervention will be suboptimal.

Pre- and postprocessing schemes can be integrated using mlr3pipelines (Chapter 7).
We provide two examples below, first preprocessing to balance observation weights with
po("reweighing_wts") and second post-processing predictions using po("EOd"). The lat-
ter enforces the equalized odds fairness definition by stochastically flipping specific predic-
tions. We also test lrn("classif.fairzlrm") against the other methods.

# load learners
lrn_rpart = lrn("classif.rpart", predict_type = "prob")
lrn_rpart$id = "rpart"
l1 = as_learner(po("reweighing_wts") %>>% lrn("classif.rpart"))
l1$id = "reweight"

l2 = as_learner(po("learner_cv", lrn("classif.rpart")) %>>%
po("EOd"))

l2$id = "EOd"

# preprocess by collapsing factors
l3 = as_learner(po("collapsefactors") %>>% lrn("classif.fairzlrm"))
l3$id = "fairzlrm"

# load task and subset by rows and columns
task = tsk("adult_train")
task$set_col_roles("sex", "pta")$
filter(sample(task$nrow, 500))$
select(setdiff(task$feature_names, "education_num"))

# run experiment
lrns = list(lrn_rpart, l1, l2, l3)
bmr = benchmark(benchmark_grid(task, lrns, rsmp("cv", folds = 5)))
meas = msrs(c("classif.acc", "fairness.eod"))
bmr$aggregate(meas)[,
.(learner_id, classif.acc, fairness.equalized_odds)]

learner_id classif.acc fairness.equalized_odds
1: rpart 0.836 0.1981
2: reweight 0.828 0.1860
3: EOd 0.826 0.1969
4: fairzlrm 0.814 0.1987

We can study the result using built-in plotting functions, below we use
fairness_accuracy_tradeoff(), to compare classification accuracy (default accu-
racy measure for the function) and equalized odds (msr("fairness.eod")) across
cross-validation folds.

fairness_accuracy_tradeoff(bmr, fairness_measure = msr("fairness.eod"),
accuracy_measure = msr("classif.ce")) +
ggplot2::scale_color_viridis_d("Learner") +
ggplot2::theme_minimal()

https://mlr3pipelines.mlr-org.com
https://mlr3fairness.mlr-org.com/reference/fairness_accuracy_tradeoff.html
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Figure 14.2: Comparison of learners with respect to classification accuracy (x-axis) and
equalized odds (y-axis) across (dots) and aggregated over (crosses) folds.

Looking at the table of results and Figure 14.2, the reweighting method appears to yield
marginally better fairness metrics than the other methods though the difference is unlikely
to be significant. So in this case, we would likely conclude that introducing bias mitigation
steps did not improve algorithmic fairness.

As well as manually computing and analyzing fairness metrics, one could also make use
of mlr3tuning (Chapter 4) to automate the process with respect to one or more metrics
(Section 5.2).

14.5 Conclusion
The functionality introduced above is intended to help users investigate their models for
biases and potentially mitigate them. Fairness metrics can not be used to prove or guarantee
fairness. Deciding whether a model is fair requires additional investigation, for example,
understanding what the measured quantities represent for an individual in the real world
and what other biases might exist in the data that could lead to discrepancies in how, for
example, covariates or the label are measured.

The simplicity of fairness metrics means they should only be used for exploratory purposes,
and practitioners should not solely rely on them to make decisions about employing a ma-
chine learning model or assessing whether a system is fair. Instead, practitioners should
look beyond the model and consider the data used for training and the process of data and
label acquisition. To help in this process, it is important to provide robust documentation
for data collection methods, the resulting data, and the models resulting from this data.
Informing auditors about those aspects of a deployed model can lead to a better assessment
of a model’s fairness. Questionnaires for machine learning models and data sets have been

https://mlr3tuning.mlr-org.com
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previously proposed in the literature and are available in mlr3fairness from automated
report templates (report_modelcard() and report_datasheet()) using R markdown for
data sets and machine learning models. In addition, report_fairness() provides a tem-
plate for a fairness reportFairness

Report
inspired by the Aequitas Toolkit (Saleiro et al. 2018).

We hope that pairing the functionality available in mlr3fairness with additional ex-
ploratory data analysis, a solid understanding of the societal context in which the decision
is made and integrating additional tools (e.g. interpretability methods seen in Chapter 12),
might help to mitigate or diminish unfairness in systems deployed in the future.

Table 14.1: Important classes and functions covered in this chapter with underlying class
(if applicable), class constructor or function, and important class fields and methods (if
applicable).

Class Constructor/Function Fields/Methods
MeasureFairness msr("fairness", ...) -
- fairness_prediction_density()
- compare_metrics() -
PipeOpReweighingWeights po("reweighing_wts") -
PipeOpEOd po("EOd") -
- fairness_accuracy_tradeoff()
- report_fairness() -

14.6 Exercises
1. Train a model of your choice on tsk("adult_train") and test it on

tsk("adult_test"), use any measure of your choice to evaluate your predictions.
Assume our goal is to achieve parity in false omission rates across the protected
‘sex’ attribute. Construct a fairness metric that encodes this and evaluate your
model. To get a deeper understanding, look at the groupwise_metrics function
to obtain performance in each group.

2. Improve your model by employing pipelines that use pre- or post-processing meth-
ods for fairness. Evaluate your model along the two metrics and visualize the re-
sulting metrics. Compare the different models using an appropriate visualization.

3. Add “race” as a second sensitive attribute to your dataset. Add the information
to your task and evaluate the initial model again. What changes? Again study
the groupwise_metrics.

4. In this chapter we were unable to reduce bias in our experiment. Using everything
you have learned in this book, see if you can successfully reduce bias in your model.
Critically reflect on this exercise, why might this be a bad idea?

https://mlr3fairness.mlr-org.com
https://mlr3fairness.mlr-org.com/reference/report_modelcard.html
https://mlr3fairness.mlr-org.com/reference/report_datasheet.html
https://mlr3fairness.mlr-org.com/reference/report_fairness.html
https://mlr3fairness.mlr-org.com/reference/MeasureFairness.html
https://mlr3fairness.mlr-org.com/reference/fairness_prediction_density.html
https://mlr3fairness.mlr-org.com/reference/compare_metrics.html
https://mlr3fairness.mlr-org.com/reference/mlr_pipeops_reweighing.html
https://mlr3fairness.mlr-org.com/reference/mlr_pipeops_equalized_odds.html
https://mlr3fairness.mlr-org.com/reference/fairness_accuracy_tradeoff.html
https://mlr3fairness.mlr-org.com/reference/report_fairness.html
https://mlr3fairness.mlr-org.com/reference/groupwise_metrics.html


15
Predict Sets, Validation and Internal
Tuning (+)
Sebastian Fischer
Ludwig-Maximilians-Universität München, and Munich Center for Machine Learning
(MCML)

15.1 Predict Sets and Training Error Estimation
In Chapter 3 we have already studied in detail how to train, predict and evaluate many
different learners. Evaluating a fully trained model usually requires making predictions on
unseen test observations. When we predict directly with a trained learner, we can explicitly
control which observations are used:

tsk_sonar = tsk("sonar")
lrn_rf = lrn("classif.ranger")
lrn_rf$train(tsk_sonar, row_ids = 4:208)
pred1 = lrn_rf$predict(tsk_sonar, row_ids = 1:3)
pred2 = lrn_rf$predict_newdata(tsk_sonar$data(1:3))

But when using resample() or benchmark(), the default behavior is to predict on the test
set of the resampling. It is also possible to make predictions on other dedicated subsets of
the task and data, i.e. the train and internal_valid data, by configuring the $predict_sets
of a learner. We will discuss the more complex internal_valid option in the next sections.
We will now look at how to predict on train sets. This is sometimes be of interest for further
analysis or to study overfitting. Or maybe we are simply curious. Let’s configure our learner
to simultaneously predict on train and test:

lrn_rf$predict_sets = c("train", "test")
rr = resample(tsk_sonar, lrn_rf, rsmp("cv", folds = 3))

The learner, during resampling, will now after having been trained for the current iteration,
produce predictions on all requested sets. To access them, we can either ask for a list of 3
prediction objects, one per CV fold, or we can ask for a combined prediction object for the
whole CV – which in this case contains as many prediction rows as observations in the task.

str(rr$predictions("test")) # or str(rr$predictions("train"))

List of 3
$ :Classes 'PredictionClassif', 'Prediction', 'R6' <PredictionClassif>
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$ :Classes 'PredictionClassif', 'Prediction', 'R6' <PredictionClassif>
$ :Classes 'PredictionClassif', 'Prediction', 'R6' <PredictionClassif>

rr$prediction("test") # or rr$prediction("train")

<PredictionClassif> for 208 observations:
row_ids truth response

5 R M
6 R M
7 R M

--- --- ---
200 M M
203 M M
208 M M

We can also apply performance measures to specific sets of the resample result:

rr$aggregate(list(
msr("classif.ce", predict_sets = "train", id = "ce_train"),
msr("classif.ce", predict_sets = "test", id = "ce_test")

))

ce_train ce_test
0.0000 0.2065

The default predict set for a measure is usually the test set. But we can request other sets
here. If multiple predict sets are requested for the measure, their predictions are joined
before they are passed into the measure, which then usually calculates an aggregated score
over all predicted rows of the set. In our case, unsurprisingly, the train error is lower than
the test error.

If we only want to access information that is computed during training, we can even config-
ure the learner not to make any predictions at all. This is useful, for example, for learners
that already (in their underlying implementation) produce an estimate of their generaliza-
tion error during training, e.g. using out-of-bag error estimates or validation scores. The
former, which is only available to learners with the ‘oob_error’ property, can be accessed
via MeasureOOBError. The latter is available to learners with the ‘validation’ property and
is implemented as MeasureInternalValidScore. Below we evaluate a random forest using
its out-of-bag error. Since we do not need any predict sets, we can use ResamplingInsample,
which will use the entire dataset for training.

lrn_rf$predict_sets = NULL
rsmp_in = rsmp("insample")
rr = resample(tsk_sonar, lrn_rf, rsmp_in, store_models = TRUE)
msr_oob = msr("oob_error")
rr$aggregate(msr_oob)

oob_error
0.1587

All this works in exactly the same way for benchmarking, tuning, nested resampling, and
any other procedure where resampling is internally involved and we either generate pre-

https://mlr3.mlr-org.com/reference/mlr_measures_oob_error.html
https://mlr3.mlr-org.com/reference/mlr_measures_internal_valid_score.html
https://mlr3.mlr-org.com/reference/mlr_resamplings_insample.html
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dictions or apply performance measures on them. Below we illustrate this by tuning the
mtry.ratio parameter of a random forest (with a simple grid search). Instead of explicitly
making predictions on some test data and evaluating them, we use OOB error to evaluate
mtry.ratio. This can speed up the tuning process considerably, as in this case only one RF
is fitted (it is simply trained) and we can access the OOB from this single model, instead
of fitting multiple models. As the OOB observations are untouched during the training of
each tree in the ensemble, this still produces a valid performance estimate.

lrn_rf$param_set$set_values(
mtry.ratio = to_tune(0.1, 1)

)

ti = tune(
task = tsk_sonar,
tuner = tnr("grid_search"),
learner = lrn_rf,
resampling = rsmp_in,
measure = msr_oob,
term_evals = 10,
store_models = TRUE

)

15.2 Validation
For iterative training (which many learners use) it can be interesting to track performance
during training on validation data. One can use this for simple logging or posthoc analysis,
but the major use case is early stopping. If the model’s performance on the training data
keeps improving but the performance on the validation data plateaus or degrades, this
indicates overfitting and we should stop iterative training. Handling this in an online fashion
during training is much more efficient than configuring the number of iterations from the
outside via traditional, offline hyperparameter tuning, where we would fit the model again
and again with different iteration numbers (and would not exploit any information regarding
sequential progress).

In mlr3, learners can have the ‘validation’ and ‘internal_tuning’ properties to indicate
whether they can make use of a validation set and whether they can internally optimize
hyperparameters, for example by stopping early. To check if a given learner supports this, we
can simply access its $properties field. Examples of such learners are boosting algorithms
like XGBoost, LightGBM, or CatBoost, as well as deep learning models from mlr3torch.
In this section we will train XGBoost on sonar and keep track of its performance on a
validation set.

tsk_sonar = tsk("sonar")
lrn_xgb = lrn("classif.xgboost")
lrn_xgb

<LearnerClassifXgboost:classif.xgboost>: Extreme Gradient Boosting

https://cran.r-project.org/package=mlr3torch
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* Model: -
* Parameters: nrounds=1000, nthread=1, verbose=0
* Validate: NULL
* Packages: mlr3, mlr3learners, xgboost
* Predict Types: [response], prob
* Feature Types: logical, integer, numeric
* Properties: hotstart_forward, importance, internal_tuning,
missings, multiclass, twoclass, validation, weights

To enable validation, we need to configure how the validation data is constructed. For
XGBoost there is a special watchlist parameter, but mlr3 also provides a standardized –
and as we will see later, more powerful – interface via the learner’s $validate field. This
field can be set to:

• NULL to use no validation data (default),
• a ratio indicating the proportion of training data to be used as the validation set,
• "predefined" to use the validation data specified in the task (we will see shortly how to

configure this), and
• "test" to use the test set as validation data, which only works in combination with

resampling and tuning.

Test Data Leakage

If a learner’s $validate field is set to ‘test’, we will leak the resampling test set during
training. This will lead to biased performance estimates if the validation scores are
used for early stopping. Whether this is desireable depends on the context: if the
test set is used to evaluate parameter configurations during HPO (i.e. it acts as a
validation set), then this is usually OK; However, if the purpose of the test set is to
provide an unbiased estimate of performance, e.g. to compare different learners, then
this is not OK.

Below, we configure the XGBoost learner to use 1/3 of its training data for validation:

lrn_xgb$validate = 1/3

Next, we set the number of iterations (nrounds) and which metric to track (eval_metric)
and train the learner. Here, 1/3 of the observations from the training task will be solely used
for validation and the remaining 2/3 for training. If stratification or grouping is enabled in
the task, this will also be respected. For further details on this see Chapter 3.

lrn_xgb$param_set$set_values(
nrounds = 100,
eval_metric = "logloss"

)
lrn_xgb$train(tsk_sonar)

Because the XGBoost learner kept a log of the validation performance, we can now access
this through the $model slot. Where exactly in the model this information is stored, depends
on the specific learning algorithm. For XGBoost, the history is stored in $evaluation_log:



Validation 333

tail(lrn_xgb$model$evaluation_log)

iter test_logloss
1: 95 0.5715
2: 96 0.5691
3: 97 0.5703
4: 98 0.5727
5: 99 0.5716
6: 100 0.5727

The validation loss over time is visualized in the figure below, with the iterations on the
x-axis and the validation logloss on the y-axis:
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mlr3 also provides a standardized acccessor for the final validation performance. We can
access this via the $internal_valid_scores field, which is a named list containing possibly
more than one validation metric.

lrn_xgb$internal_valid_scores

$logloss
[1] 0.5727

In some cases one might want to have more control over the construction of the validation
data. This can be useful, for example, if there is a predefined validation split to be used
with a task. Such fine-grained control over the validation data is possible by setting the
validate field to "predefined".

lrn_xgb$validate = "predefined"

This allows us to use the $internal_valid_task defined in the training task. Below, we
set the validation task to use 60 randomly sampled ids and remove them from the primary
task.

valid_ids = sample(tsk_sonar$nrow, 60)
tsk_valid = tsk_sonar$clone(deep = TRUE)
tsk_valid$filter(valid_ids)
tsk_sonar$filter(setdiff(tsk_sonar$row_ids, valid_ids))
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tsk_sonar$internal_valid_task = tsk_valid

Note that we could have achieved the same by simply setting
tsk_valid$internal_valid_task = valid_ids, but showed the explicit way for
completeness sake. The associated validation task now has 60 observations and the primary
task 148:

c(tsk_sonar$internal_valid_task$nrow, tsk_sonar$nrow)

[1] 60 148

When we now train, the learner will validate itself on the specified additional task. Note
that the $internal_valid_task slot is always used internally, even if you set a ratio value
in learner$validate, it is simply automatically auto-constructed (and then passed down).

lrn_xgb$train(tsk_sonar)

In many cases, however, one does not only train an individual learner, but combines it with
other (preprocessing) steps in a GraphLearner, see Chapter 9. Validation in a GraphLearner
is still possible, because preprocessing PipeOps also handle the validation task. While the
train logic of the PipeOps is applied to the primary task, the predict logic is applied to
the validation data. This ensures that there is no data leakage when the XGBoost learner
evaluates its performance on the validation data. Below, we construct a PipeOpPCA and
apply it to the sonar task with a validation task.

po_pca = po("pca")
taskout = po_pca$train(list(tsk_sonar))[[1]]
taskout$internal_valid_task

<TaskClassif:sonar> (60 x 61): Sonar: Mines vs. Rocks
* Target: Class
* Properties: twoclass
* Features (60):
- dbl (60): PC1, PC10, PC11, PC12, PC13, PC14, PC15, PC16,

PC17, PC18, PC19, PC2, PC20, PC21, PC22, PC23, PC24, PC25,
PC26, PC27, PC28, PC29, PC3, PC30, PC31, PC32, PC33, PC34,
PC35, PC36, PC37, PC38, PC39, PC4, PC40, PC41, PC42, PC43,
PC44, PC45, PC46, PC47, PC48, PC49, PC5, PC50, PC51, PC52,
PC53, PC54, PC55, PC56, PC57, PC58, PC59, PC6, PC60, PC7,
PC8, PC9

The preprocessing that is applied to the $internal_valid_task during $train() is equiv-
alent to predicting on it:

po_pca$predict(list(tsk_sonar$internal_valid_task))[[1L]]

<TaskClassif:sonar> (60 x 61): Sonar: Mines vs. Rocks
* Target: Class
* Properties: twoclass
* Features (60):
- dbl (60): PC1, PC10, PC11, PC12, PC13, PC14, PC15, PC16,

https://mlr3pipelines.mlr-org.com/reference/mlr_learners_graph.html
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PC17, PC18, PC19, PC2, PC20, PC21, PC22, PC23, PC24, PC25,
PC26, PC27, PC28, PC29, PC3, PC30, PC31, PC32, PC33, PC34,
PC35, PC36, PC37, PC38, PC39, PC4, PC40, PC41, PC42, PC43,
PC44, PC45, PC46, PC47, PC48, PC49, PC5, PC50, PC51, PC52,
PC53, PC54, PC55, PC56, PC57, PC58, PC59, PC6, PC60, PC7,
PC8, PC9

This means that tracking validation performance works even in complex graph learners,
which would not be possible when simply setting the watchlist parameter of XGBoost.
Below, we chain the PCA operator to XGBoost and convert it to a learner.

glrn = as_learner(po_pca %>>% lrn_xgb)

While this almost ‘just works’, we now need to specify the $validate field on two levels:

1. For the GraphLearner itself, i.e. how the validation data is created before the
Task enters the graph.

2. Which PipeOps that have the property "validation" should actually use it.

This configuration can be simplified by using set_validate(). When applied to a
GraphLearner, we can specify the arguments validate which determines how to create
the validation data and optionally the argument ids which specifies which PipeOps should
use it. By default, the latter is set to the $base_learner() of the Graph, which is the last
learner. This means that both calls below are equivalent:

set_validate(glrn, validate = "predefined")
set_validate(glrn, validate = "predefined", ids = "classif.xgboost")

We can now train the graph learner just as before and inspect the final validation metric,
which is now prefixed with the ID of the corresponding PipeOp.

glrn$validate = "predefined"
glrn$train(tsk_sonar)
glrn$internal_valid_scores

$classif.xgboost.logloss
[1] 0.5765

Field $validate for PipeOps

Since individual PipeOps cannot control how the validation data is generated, only
whether to use it, their $validate field can only be set to NULL or "predefined".
This is why we get an error when running as_pipeop(lrn("classif.xgboost",
validate = 0.3)). When using validation in a GraphLearner, it is best to
first construct the learner without specifying the validation data and then use
set_validate().
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15.3 Internal Tuning
Not only can XGBoost log its validation performance, it can also monitor it to early stop its
training, i.e. perform internal tuning of the nrounds hyperparameter during training. This
is marked by the "internal_tuning" property:

"internal_tuning" %in% lrn_xgb$properties

[1] TRUE

Early stopping for XGBoost can be enabled by specifying the early_stopping_rounds
parameter. This is also known as patience and specifies for how many iterations the valida-
tion loss must not improve for the training to terminate. The metric that is used for early
stopping is the first value that we passed to eval_metric, which was the logloss.

lrn_xgb$param_set$set_values(
early_stopping_rounds = 10,
nrounds = 100

)

When we now train the learner, we can access the internally optimized nrounds through
the $internal_tuned_values field.

lrn_xgb$train(tsk_sonar)
lrn_xgb$internal_tuned_values

$nrounds
[1] 10

By using early stopping, we were able to already terminate training after 20 iterations.
Below, we visualize the validation loss over time and the optimal nrounds is marked red.
We can see that the logloss plateaus after 10 rounds, but training continues for a while
afterwards due to the patience setting.
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So far we have only used the early stopping implementation of XGBoost to optimize
nrounds, but have not tuned any other hyperparameters. This is where mlr3 comes in,

https://mlr3.mlr-org.com
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as it allows us to combine the internal tuning of a learner with (non-internal) hyperparam-
eter tuning via mlr3tuning. To do this, we set both parameters to to_tune(), but mark
nrounds to be tuned internally.

lrn_xgb$param_set$set_values(
eta = to_tune(0.001, 0.1, logscale = TRUE),
nrounds = to_tune(upper = 500, internal = TRUE)

)

In such scenarios, one might often want to use the same validation data to optimize eta and
nrounds. This is possible by specifying the "test" option of the validate field. This means
that in each resampling iteration the validation data will be set to the test set, i.e. the same
data that will also be used to evaluate the parameter configuration (to tune eta).

lrn_xgb$validate = "test"

We will now continue to tune XGBoost with a simple grid search with 10 evaluations and a
3-fold CV for inner resampling. Internally, this will train XGBoost with 10 different values
of eta and the nrounds parameter fixed at 500, i.e. the upper bound from above. For each
value of eta a 3-fold CV with early stopping will be performed, yielding 3 (possibly different)
early stopped values for nrounds for each value of eta. These are combined into a single
value according to an aggregation rule, which by default is set to averaging, but which can
be overridden when creating the internal tune token, see to_tune() for more information.

When combining internal tuning with hyperparameter optimization via mlr3tuning we need
to specify two performance metrics: one for the internal tuning and one for the Tuner. For
this reason, mlr3 requires the internal tuning metric to be set explicitly, even if a default
value exists. There are two ways to use the same metric for both types of hyperparameter
optimization:

1. Use msr("internal_valid_scores", select = <id>), i.e. the final validation
score, as the tuning measure. As a learner can have multiple internal valid scores,
the measure allows us to select one by specifying the select argument. If this is
not specified, the first validation measure will be used. We also need to specify
whether the measure should be minimized.

2. Set both, the eval_metric and the tuning measure to the same metric,
e.g. eval_metric = "error" and measure = msr("classif.ce"). Some learn-
ers even allow to set the validation metric to an mlr3::Measure. You can find out
which ones support this feature by checking their corresponding documentation.
One example for this is XGBoost.

The advantage of using the first option is that the predict step can be skipped because the
internal validation scores are already computed during training. In a certain sense, this is
similar to the evaluation of the random forest with the OOB error in Section 15.1.

tsk_sonar = tsk("sonar")
lrn_xgb$predict_sets = NULL

ti = tune(
tuner = tnr("grid_search"),

https://mlr3tuning.mlr-org.com
https://paradox.mlr-org.com/reference/to_tune.html
https://mlr3tuning.mlr-org.com
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learner = lrn_xgb,
task = tsk_sonar,
resampling = rsmp("cv", folds = 3),
measure = msr("internal_valid_score",

select = "logloss", minimize = TRUE),
term_evals = 10L

)

Warning

When working with a GraphLearner, the names of the internal validation scores are
prefixed by the ID of the corresponding PipeOp, so the select parameter needs to be
set to "<pipeop id>.<measure id>".

The tuning result contains the best found configuration for both eta and nrounds.

ti$result_learner_param_vals[c("eta", "nrounds")]

$eta
[1] 0.03594

$nrounds
[1] 101

We now show how to extract the different parameter configurations from the tuning archive.
All internally tuned parameters are accessible via the $internal_tuned_values. This is
a list column, because it is possible to tune more than one parameter internally, e.g. in a
GraphLearner. Below we extract the values for eta (transformed back from its log scale),
nrounds (internally tuned) and the logloss. The latter was evaluated on the internal vali-
dation tasks, which corresponded to the Resampling’s test sets as we specified validate
= "test". By visualizing the results we can see an inverse relationship between the two
tuning parameters: a smaller step size (eta) requires more boosting iterations (nrounds).

d = ti$archive$data

d = data.table(
eta = exp(d$eta),
nrounds = unlist(d$internal_tuned_values),
logloss = d$logloss

)

ggplot(data = d, aes(x = eta, y = nrounds, color = logloss)) +
geom_point() + theme_minimal()
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This also works with an AutoTuner, which will use the internally optimized nrounds, as
well as the offline tuned eta for the final model fit. This means that there is no validation
or early stopping when training the final model, and we use all available data.

at = auto_tuner(
tuner = tnr("grid_search"),
learner = lrn_xgb,
resampling = rsmp("cv", folds = 3),
measure = msr("internal_valid_score",

select = "logloss", minimize = TRUE),
term_evals = 10L

)
at$train(tsk_sonar)

If we were to resample the AutoTuner from above, we would still get valid performance
estimates. This is because the test set of the outer resampling is never used as validation
data, since the final model fit does not perform any validation. The validation data generated
during the hyperparameter tuning uses the test set of the inner resampling, which is a subset
of the training set of the outer resampling.

However, care must be taken when using the test set of a resampling for validation. Whether
this is OK depends on the context and purpose of the resampling. If the purpose of resam-
pling is to get an unbiased performance estimate of algorithms, some of which stop early
and some of which don’t, this is not OK. In such a situation, the former would have an
unfair advantage over the latter. The example below illustrates such a case where this would
not be a fair comparison between the two learners.

lrn_xgb$param_set$set_values(
eta = 0.1, nrounds = 500, early_stopping_rounds = 10

)
lrn_xgb$predict_sets = "test"

design = benchmark_grid(
tsk_sonar, list(lrn_xgb, lrn("classif.rpart")), rsmp("cv", folds = 3)

)
bmr = benchmark(design)
bmr$aggregate(msr("classif.ce"))

https://mlr3tuning.mlr-org.com/reference/AutoTuner.html
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nr task_id learner_id resampling_id iters classif.ce
1: 1 sonar classif.xgboost cv 3 0.1251
2: 2 sonar classif.rpart cv 3 0.2933
Hidden columns: resample_result

At last, we will cover how to enable internal tuning when manually specifying a search
space with the ps() function instead of the to_tune()-mechanism. While the latter is more
convenient and therefore usually recommended, manually defining a search space gives you
for more flexibility with respect to parameter transformations, see e.g. Section 4.4.3. We
can include the internally tuned parameters in the search_space, but need to specify an
aggregation function and tag them with "internal_tuning".

search_space = ps(
eta = p_dbl(0.001, 0.1, logscale = TRUE),
nrounds = p_int(upper = 500, tags = "internal_tuning",

aggr = function(x) as.integer(mean(unlist(x))))
)

This search space can be passed to the AutoTuner and the optimization will then proceed
as before.

at = auto_tuner(
tuner = tnr("grid_search"),
learner = lrn_xgb,
resampling = rsmp("cv", folds = 3),
measure = msr("internal_valid_score",

select = "logloss", minimize = TRUE),
search_space = search_space,
term_evals = 10L

)
at$train(tsk_sonar)

15.4 Conclusion
In this chapter we first learned how to evaluate machine learning methods on different
prediction sets, namely train, internal_valid and test. Then we learned how to track the
performance of an iterative learning procedure on a validation set. This technique also works
seamlessly in a graphlearner, the only difference being that you have to specify not only how
to create the validation data, but also which PipeOps should use it. Furthermore, mlr3’s
internal tuning mechanism allows you to combine hyperparameter tuning via mlr3tuning
with internal tuning of the learning algorithm, such as early stopping of XGBoost.

https://mlr3tuning.mlr-org.com
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15.5 Exercises
1. Manually $train() a LightGBM classifier from mlr3extralearners on the pima

task using 1/3 of the training data for validation. As the pima task has missing
values, select a method from mlr3pipelines to impute them. Explicitly set the
evaluation metric to logloss ("binary_logloss"), the maximum number of boost-
ing iterations to 1000, the patience parameter to 10, and the step size to 0.01.
After training the learner, inspect the final validation scores as well as the early
stopped number of iterations.

2. Wrap the learner from exercise 1) in an AutoTuner using a three-fold CV for
the tuning. Also change the rule for aggregating the different boosting iterations
from averaging to taking the maximum across the folds. Don’t tune any param-
eters other than nrounds, which can be done using tnr("internal"). Use the
internal validation metric as the tuning measure. Compare this learner with a
lrn("classif.rpart") using a 10-fold outer cross-validation with respect to
classification accuracy.

3. Consider the code below:

branch_lrn = as_learner(
ppl("branch", list(

lrn("classif.ranger"),
lrn("classif.xgboost",
early_stopping_rounds = 10,
eval_metric = "error",
eta = to_tune(0.001, 0.1, logscale = TRUE),
nrounds = to_tune(upper = 1000, internal = TRUE)))))

set_validate(branch_lrn, validate = "test", ids = "classif.xgboost")
branch_lrn$param_set$set_values(branch.selection = to_tune())

at = auto_tuner(
tuner = tnr("grid_search"),
learner = branch_lrn,
resampling = rsmp("holdout", ratio = 0.8),
# cannot use internal validation score because ranger does not have one
measure = msr("classif.ce"),
term_evals = 10L,
store_models = TRUE

)

tsk_sonar = tsk("sonar")$filter(1:100)

rr = resample(
tsk_sonar, at, rsmp("holdout", ratio = 0.8), store_models = TRUE

)

Answer the following questions (ideally without running the code):

https://mlr3extralearners.mlr-org.com
https://mlr3pipelines.mlr-org.com
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3.1 During the hyperparameter optimization, how many observations are used to
train the XGBoost algorithm (excluding validation data) and how many for the
random forest? Hint: learners that cannot make use of validation data ignore it.
3.2 How many observations would be used to train the final model if XGBoost was
selected? What if the random forest was chosen? 3.3 How would the answers to
the last two questions change if we had set the $validate field of the graphlearner
to 0.25 instead of "test"?

4. Look at the (failing) code below:

tsk_sonar = tsk("sonar")
glrn = as_learner(
po("pca") %>>% lrn("classif.xgboost", validate = 0.3)

)

Can you explain why the code fails? Hint: Should the data that xgboost uses for
validation be preprocessed according to the train or predict logic?
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$edges, 161
$pipeops, 161
%»%, 160
AcqOptimizer, 129
AutoFSelector, 152
AutoTuner, 94
DALEX, 271
FSelectorBatch, 146, 149, 150
Filter, 143
GraphLearner, 163
Graph, 157, 160

$plot(), 161
LearnerClassif, 35, 38
Learner, 19

$aggregate(), 58
$encapsulate(), 222, 224
$model, 20
$param_set, 24
$predict(), 20, 22
$predict_newdata(), 23
$predict_type, 24
$set_values(), 26
$train(), 20

MeasureClassif, 35, 39
Measure, 30

$param_set, 33
$predict_type, 39

Objective, 121
ParamSet, 25

$deps, 28
PipeOpLearnerCV, 176
PipeOpSelect, 170
PipeOp, 157, 158
PredictionClassif, 40

$confusion, 40
$set_threshold(), 40

PredictionRegr, 22
Prediction, 22, 31

$score(), 31, 40
ResampleResult, 57, 69
Resampling, 56

$instantiate(), 56
Selector, 170

TaskClassif, 35, 36
$positive, 37

TaskGenerator, 98
TaskRegr, 15
Task

$cbind(), 19
$filter(), 18
$rbind(), 19
$select(), 18
$set_col_roles(), 45

Terminator, 84
TunerMbo, 133
Tuner, 85
acqf(), 128
acqo(), 130
as_benchmark_aggr(), 253
as_learner(), 163
as_resamplings(), 243
as_task_classif, 36
as_task_regr(), 15
as_tasks(), 243
auto_fselector, 152
auto_tuner(), 97
batchmark(), 246
batchtools, 245
bbotk, 121, 139
benchmark(), 34, 67
chunk(), 248
counterfactuals, 267
flt(), 143
fs(), 150
fselect(), 148
fsi(), 149
getStatus(), 249
iml, 258
loadRegistry(), 249
loop_function, 130
lrn(), 20
mlr3batchmark, 245, 246, 254
mlr3benchmark, 254
mlr3cluster, 286, 301, 318
mlr3db, 228
mlr3extralearners, 46, 47, 232
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mlr3fairness, 321, 328
mlr3filters, xiii, 139, 142
mlr3fselect, xiii, 139, 147, 227
mlr3hyperband, 86, 111, 118
mlr3learners, 46, 47
mlr3mbo, 86, 111, 121, 139
mlr3misc, 211
mlr3oml, 239, 254
mlr3pipelines, xiv, 157, 166, 169, 189,

191, 204, 232, 285, 288, 326
mlr3proba, 285, 289, 318
mlr3spatial, 286, 316, 318
mlr3spatiotempcv, 286, 311, 318
mlr3tuningspaces, 83
mlr3tuning, xiii, 82, 86, 111, 139, 166, 169,

179, 227, 232, 288, 327, 340
mlr3verse, 1
mlr3viz, 10, 16, 23, 308
mlr3, xiii, 1, 5, 10, 13, 46, 48, 53, 86, 157,

209, 237, 285, 321, 336
mlr_filters, 143
mlr_fselectors, 150
mlr_graphs, 173
mlr_learners, 19, 47
mlr_measures, 30
mlr_pipeops, 158
mlr_tasks, 14
mlr, xiii
msr()/msrs(), 30, 31
ocl(), 243
odt(), 239
opt(), 123, 130, 132
otsk(), 241
paradox, 125
partition(), 21
po(), 158
ppl(), 173
ppl(robustify), 198
resample(), 57, 67
rsmp(), 56
srlrn(), 127
testJob(), 247
trm(), 84
tsk(), 15
tune(), 97

accuracy, 39, 72
acquisition function, 124, 128
acquisition function optimizer, 129
algorithm, 13
algorithmic fairness, 257, 321

causal, 322
individual, 322

AUC, 74
autocorrelation, 311

bagging, 173
baselines, 29, 112
Bayesian optimization, 86, 87, 120, 180
benchmark experiment, 67
benchmark experiments, 67, 214, 228, 237
benchmark study, see benchmark

experiment
benchmark suites, 243
bias, 322
bias-preserving, 323
bias-transforming, 322
black box, 257
black box optimization, 81, 86, 120
BLAS, 213
boosting, 47
bootstrapping, 54
Brier score, 39

CASH, see combined algorithm selection
and hyperparameter optimization

ceteris paribus, see individual conditional
expectation (ICE) curves

chunk, 248
chunking, 210
classification, 1, 13, 34

binary, 36, 70
cost-sensitive, 13, 44, 286
multiclass, 36, 173

classification error, 40
cluster analysis, 301
cluster cohesion, 306
cluster separation, 306
CMA-ES, 86
column roles, 44
combined algorithm selection and

hyperparameter optimization, 179
computational job, 245
confusion matrix, 40, 71
control parameters, 33, 88
correlation, 311
counterfactual, 267
Cox Proportional Hazards, 292
cross-validation, 54

leave-one-out, 54
repeated k-fold, 54

DAG, see Directed Acyclic Graph
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data backend, 228
data cleaning, 191
data imputation, 196
data parallelism, 210
debugging, 111, 164, 209, 220, 249
decision tree, 13, 176, 181, 210
demographic parity, 323
dendrogram, 305
density estimation, 298
descriptor selection, see feature selection
dictionaries, 9
DIRECT, 129
directed acyclic graph, 162
DuckDB, 228, 231
dummy encoding, see encoding, treatment

efficient global optimization, 130
embarrassingly parallel, 210, 244
embedded methods, 144
encapsulation, 112, 221
encoding, 193, 198

impact, 194
one-hot, 194
treatment, 194

ensemble, 157
equalized odds, 323
evolutionary strategies, 86, 87
explanatory model analysis, 272
exploratory data analysis, see data cleaning

F1, 72
factor encoding, 162, 191
FAIR, 238
fairness, see algorithmic fairness
fairness report, 328
fallback learner, 112, 224
false negative, 318
false negatives, 41, 71
false positive, 318
false positive rate, 71, 323
false positives, 41, 71
feature effect, 261
feature engineering, 191
feature extraction, 191, 201
feature importance, 142, 144, 259
feature selection, 141, 187, 201

embedded, 141
implicit, 141

features, 13
fidelity, 116

multi-fidelity, 116

fidelity parameters, 186
Filter

$calculate(), 143
fitting, see model training
friedman, 253

Gaussian process, 47, 127, 136
generalization error, 14, 99
generalization performance, 51
generalized linear model, 47, 176, 194
granularity, 210
grid search, 81, 87
group fairness, 322
grouped resampling, 63

hierarchical clustering, 305
high-performance computing, 237, 244
holdout, 52
HPO, 81
hyperband, 87, 117, 186
hyperparameter optimization, see HPO, 120
hyperparameters, 13, 24, 81, 158, 166

imputation, 162, 163, 191, 198
independence, see bias-transforming
individual conditional expectation, 261
initial design, 124
intermediate model, 52
interpretability, 257
interpretable machine learning, 257
inverse weighting, 44
iterated racing, 86

jobs, 245

k-nearest neighbors, 47, 176, 199
Kaplan-Meier, 291, 296
KNN, see k-nearest neighbors

L-BFGS-B, 130
LIME, 265
linear predictor, 293
logging, 226
logistic regression, 47, 163, 178
logloss, 40
loop functions, 130

machine learning, 13
macro average, 58
mean absolute error, 30
metadata, 14
micro average, 58
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missing data, 195
model, 13, 20
model based optimization, see Bayesian

optimization
model coefficients, see parameters
model evaluation, 81
model predicting, 20
model training, 13, 20
Monte Carlo cross-validation, see

subsampling
multi-objective counterfactuals, 268
multi-objective optimization, 141
multi-objective tuning, 85, 111, 114
mutators, 18

negative predictive value, 72
nested resampling, 96
neural network, 13, 105, 114, 117

object-oriented programming, 1, 7
one-versus-rest classification, 173
OpenML, 238
optimism of the training error, 96
optimization instance, 121

parallelization, 209
parallelization backend, 209
parallelization overhead, 210
parameters, 81
Pareto front, 114, 135, 269
Pareto optimality, 114, 151
Parquet, 228, 231
partial dependence, 261
PCA, see principal component analysis
performance estimation, 51
performance measure, 51
permutation feature importance, 259
pipelines, 146
positive predictive value, 72, 74, 323
post hoc, 257
postprocessing, 191
precision, see measures, positive predictive

value
precision-recall curve, 74
preprocessing, 141, 157, 162, 191, 325
principal component analysis, 159
principal components analysis, 308

random forest, 47, 117, 127, 210, 259
random search, 81, 87
Rashomon, 271, 282
recall, see measures, true positive rate

regression, 1, 13
repeated holdout, see subsampling
resampling, 53
result assigner, 137
ROC, 70, 73

scale, 160
scheduling system, 245
search space, 83
sensitive attribute, 322
sensitivity, see measures, true positive rate
separation, see bias-preserving
sequential forward selection, 148
Shapley values, 266
single-objective, 85
Slurm, 247
socket cluster, 210
spatial analysis, 311
specificity, see measures, true negative rate
SQL, 228
SQLite, 228
stacking, 173, 176
state, 158
stratified sampling, 64
subsampling, 54
sugar functions, 9
supervised learning, 13
support vector machine, 13, 28, 47, 81, 82,

186
survival, 292

surrogate model, 124, 126, 262
global, 263
local, 264

survival analysis, 289
synchronization overhead, 211

target, 13
tasks, 1, 13, 14
test data, 14, 21, 22, 51
threading, 212
thresholding, 35, 41, 287
training data, 13, 14, 21, 51
true negative rate, 71
true negatives, 41, 71
true positive rate, 71, 74, 323
true positives, 41, 71
tuners, 81
tuning, 81, 179
tuning instance, 85
tuning space, see search space

unsupervised learning, 13
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variable selection, see feature selection

What-If, 268

Yeo-Johnson, 181
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