References
Baniecki, Hubert, and Przemyslaw Biecek. 2019. “modelStudio: Interactive Studio with Explanations for ML
Predictive Models.” Journal of Open Source
Software 4 (43): 1798. https://doi.org/10.21105/joss.01798.
Baniecki, Hubert, Wojciech Kretowicz, Piotr Piątyszek, Jakub Wiśniewski,
and Przemysław Biecek. 2021. “dalex:
Responsible Machine Learning with Interactive Explainability and
Fairness in Python.” Journal of Machine Learning
Research 22 (214): 1–7. http://jmlr.org/papers/v22/20-1473.html.
Bengio, Yoshua, and Yves Grandvalet. 2003. “No Unbiased Estimator
of the Variance of k-Fold Cross-Validation.” Advances in
Neural Information Processing Systems 16.
Bergstra, James, and Yoshua Bengio. 2012. “Random Search for
Hyper-Parameter Optimization.” Journal of Machine Learning
Research 13 (10): 281–305. http://jmlr.org/papers/v13/bergstra12a.html.
Biecek, Przemyslaw. 2018. “DALEX: Explainers
for complex predictive models in R.” Journal of
Machine Learning Research 19 (84): 1–5. http://jmlr.org/papers/v19/18-416.html.
Biecek, Przemyslaw, and Tomasz Burzykowski. 2021. Explanatory
Model Analysis. Chapman; Hall/CRC, New York. https://ema.drwhy.ai/.
Binder, Martin, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars
Kotthoff, and Bernd Bischl. 2021. “mlr3pipelines - Flexible Machine Learning
Pipelines in R.” Journal of Machine Learning
Research 22 (184): 1–7. http://jmlr.org/papers/v22/21-0281.html.
Bischl, Bernd, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter,
Stefan Coors, Janek Thomas, et al. 2021. “Hyperparameter
Optimization: Foundations, Algorithms, Best Practices and Open
Challenges.” https://doi.org/10.48550/ARXIV.2107.05847.
Bischl, Bernd, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob
Richter, Erich Studerus, Giuseppe Casalicchio, and Zachary M. Jones.
2016. “mlr: Machine
Learning in R.” Journal of Machine
Learning Research 17 (170): 1–5. http://jmlr.org/papers/v17/15-066.html.
Bischl, Bernd, Olaf Mersmann, Heike Trautmann, and Claus Weihs. 2012.
“Resampling Methods for Meta-Model Validation with Recommendations
for Evolutionary Computation.” Evolutionary Computation
20 (2): 249–75.
Bishop, Christopher M. 2006. Pattern Recognition and Machine
Learning. Springer.
Bommert, Andrea, Xudong Sun, Bernd Bischl, Jörg Rahnenführer, and Michel
Lang. 2020. “Benchmark for Filter Methods for Feature Selection in
High-Dimensional Classification Data.” Computational
Statistics & Data Analysis 143: 106839. https://doi.org/https://doi.org/10.1016/j.csda.2019.106839.
Breiman, Leo. 1996. “Bagging Predictors.” Machine
Learning 24 (2): 123–40.
Bücker, Michael, Gero Szepannek, Alicja Gosiewska, and Przemyslaw
Biecek. 2022. “Transparency, Auditability, and Explainability of
Machine Learning Models in Credit Scoring.” Journal of the
Operational Research Society 73 (1): 70–90. https://doi.org/10.1080/01605682.2021.1922098.
Chandrashekar, Girish, and Ferat Sahin. 2014. “A Survey on Feature
Selection Methods.” Computers and Electrical Engineering
40 (1): 16–28. https://doi.org/https://doi.org/10.1016/j.compeleceng.2013.11.024.
Collett, David. 2014. Modelling Survival Data
in Medical Research. 3rd ed. CRC.
Davis, Jesse, and Mark Goadrich. 2006. “The Relationship Between
Precision-Recall and ROC Curves.” In Proceedings of the 23rd
International Conference on Machine Learning, 233–40.
Demšar, Janez. 2006. “Statistical Comparisons of Classifiers over
Multiple Data Sets.” Journal of Machine Learning
Research 7 (1): 1–30. https://jmlr.org/papers/v7/demsar06a.html.
Feurer, Matthias, and Frank Hutter. 2019. “Hyperparameter
Optimization.” In Automated Machine Learning: Methods,
Systems, Challenges, edited by Frank Hutter, Lars Kotthoff, and
Joaquin Vanschoren, 3–33. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-05318-5_1.
Guyon, Isabelle, and André Elisseeff. 2003. “An Introduction to
Variable and Feature Selection.” Journal of Machine Learning
Research 3 (Mar): 1157–82.
Hand, David J, and Robert J Till. 2001. “A Simple Generalisation
of the Area Under the ROC Curve for Multiple Class Classification
Problems.” Machine Learning 45: 171–86.
Hansen, Nikolaus, and Anne Auger. 2011. “CMA-ES: Evolution
Strategies and Covariance Matrix Adaptation.” In Proceedings
of the 13th Annual Conference Companion on Genetic and Evolutionary
Computation, 991–1010.
Hastie, Trevor, Jerome Friedman, and Robert Tibshirani. 2001. The
Elements of Statistical Learning. Springer New York. https://doi.org/10.1007/978-0-387-21606-5.
Holzinger, Andreas, Anna Saranti, Christoph Molnar, Przemyslaw Biecek,
and Wojciech Samek. 2022. “Explainable AI Methods - a Brief
Overview.” International Workshop on Extending Explainable AI
Beyond Deep Models and Classifiers, 13–38. https://doi.org/10.1007/978-3-031-04083-2_2.
Horst, Allison Marie, Alison Presmanes Hill, and Kristen B Gorman. 2020.
palmerpenguins: Palmer Archipelago (Antarctica)
penguin data. https://doi.org/10.5281/zenodo.3960218.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
2014. An Introduction to Statistical Learning: With Applications in
r. Springer Publishing Company, Incorporated.
Japkowicz, Nathalie, and Mohak Shah. 2011. Evaluating Learning
Algorithms: A Classification Perspective. Cambridge University
Press.
Kalbfleisch, John D, and Ross L Prentice. 2011. The statistical analysis of failure time
data. Vol. 360. John Wiley & Sons.
Karl, Florian, Tobias Pielok, Julia Moosbauer, Florian Pfisterer, Stefan
Coors, Martin Binder, Lennart Schneider, et al. 2022.
“Multi-Objective Hyperparameter Optimization - an
Overview.” https://doi.org/10.48550/ARXIV.2206.07438.
Kim, Ji-Hyun. 2009. “Estimating Classification Error Rate:
Repeated Cross-Validation, Repeated Hold-Out and Bootstrap.”
Computational Statistics & Data Analysis 53 (11): 3735–45.
Krzyziński, Mateusz, Mikołaj Spytek, Hubert Baniecki, and Przemysław
Biecek. 2023. “SurvSHAP(t): Time-dependent
explanations of machine learning survival models.”
Knowledge-Based Systems 262: 110234. https://doi.org/https://doi.org/10.1016/j.knosys.2022.110234.
Lang, Michel. 2017. “checkmate: Fast Argument
Checks for Defensive R Programming.” The R
Journal 9 (1): 437–45. https://doi.org/10.32614/RJ-2017-028.
Lang, Michel, Martin Binder, Jakob Richter, Patrick Schratz, Florian
Pfisterer, Stefan Coors, Quay Au, Giuseppe Casalicchio, Lars Kotthoff,
and Bernd Bischl. 2019. “mlr3: A
Modern Object-Oriented Machine Learning Framework in
R.” Journal of Open Source Software,
December. https://doi.org/10.21105/joss.01903.
Li, Lisha, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. 2017. “Hyperband: A Novel Bandit-Based Approach
to Hyperparameter Optimization.” The Journal of Machine
Learning Research 18 (1): 6765–6816.
López-Ibáñez, Manuel, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,
Mauro Birattari, and Thomas Stützle. 2016. “The Irace Package:
Iterated Racing for Automatic Algorithm Configuration.”
Operations Research Perspectives 3: 43–58.
Molinaro, Annette M, Richard Simon, and Ruth M Pfeiffer. 2005.
“Prediction Error Estimation: A Comparison of Resampling
Methods.” Bioinformatics 21 (15): 3301–7.
O’Neil, Cathy. 2016. Weapons of Math
Destruction: How Big Data Increases Inequality and Threatens
Democracy. New York, NY: Crown Publishing Group.
R Core Team. 2019. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
Romaszko, Kamil, Magda Tatarynowicz, Mateusz Urbański, and Przemysław
Biecek. 2019. “modelDown: Automated Website Generator with
Interpretable Documentation for Predictive Machine Learning
Models.” Journal of Open Source Software 4 (38): 1444.
https://doi.org/10.21105/joss.01444.
Ruspini, Enrique H. 1970. “Numerical Methods for Fuzzy
Clustering.” Information Sciences 2 (3): 319–50.
https://doi.org/https://doi.org/10.1016/S0020-0255(70)80056-1.
Schratz, Patrick, Marc Becker, Michel Lang, and Alexander Brenning.
2021. “mlr3spatiotempcv: Spatiotemporal
resampling methods for machine learning in R,” October. http://arxiv.org/abs/2110.12674.
Silverman, Bernard W. 1986. Density Estimation for Statistics and
Data Analysis. Vol. 26. CRC press.
Simon, Richard. 2007. “Resampling Strategies for Model Assessment
and Selection.” In Fundamentals of Data Mining in Genomics
and Proteomics, edited by Werner Dubitzky, Martin Granzow, and
Daniel Berrar, 173–86. Boston, MA: Springer
US. https://doi.org/10.1007/978-0-387-47509-7_8.
Sonabend, Raphael Edward Benjamin. 2021. “A
Theoretical and Methodological Framework for Machine Learning in
Survival Analysis: Enabling Transparent and Accessible Predictive
Modelling on Right-Censored Time-to-Event Data.” PhD,
University College London (UCL). https://discovery.ucl.ac.uk/id/eprint/10129352/.
Sonabend, Raphael, and Andreas Bender. 2023. Machine Learning in Survival Analysis. https://www.mlsabook.com.
Sonabend, Raphael, Andreas Bender, and Sebastian Vollmer. 2022.
“Avoiding C-hacking when evaluating survival
distribution predictions with discrimination measures.”
Edited by Zhiyong Lu. Bioinformatics 38 (17): 4178–84. https://doi.org/10.1093/bioinformatics/btac451.
Sonabend, Raphael, Franz J Király, Andreas Bender, Bernd Bischl, and
Michel Lang. 2021. “mlr3proba: An
R Package for Machine Learning in Survival
Analysis.” Bioinformatics, February. https://doi.org/10.1093/bioinformatics/btab039.
Tsallis, Constantino, and Daniel A Stariolo. 1996. “Generalized
Simulated Annealing.” Physica A: Statistical Mechanics and
Its Applications 233 (1-2): 395–406.
Wiśniewski, Jakub, and Przemysław Biecek. 2022. “The r Journal:
Fairmodels: A Flexible Tool for Bias Detection, Visualization, and
Mitigation in Binary Classification Models.” The R
Journal 14: 227–43. https://doi.org/10.32614/RJ-2022-019.
Wolpert, David H. 1992. “Stacked Generalization.”
Neural Networks 5 (2): 241–59. https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1.
Xiang, Yang, Sylvain Gubian, Brian Suomela, and Julia Hoeng. 2013.
“Generalized Simulated Annealing for Global Optimization: The
GenSA Package.” R J. 5 (1): 13.