References

Binder, Martin, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars Kotthoff, and Bernd Bischl. 2021. mlr3pipelines - Flexible Machine Learning Pipelines in R.” Journal of Machine Learning Research 22 (184): 1–7. http://jmlr.org/papers/v22/21-0281.html.
Bischl, Bernd, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas, et al. 2021. “Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges.” https://doi.org/10.48550/ARXIV.2107.05847.
Bischl, Bernd, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus, Giuseppe Casalicchio, and Zachary M. Jones. 2016. mlr: Machine Learning in R.” Journal of Machine Learning Research 17 (170): 1–5. http://jmlr.org/papers/v17/15-066.html.
Bischl, Bernd, Olaf Mersmann, Heike Trautmann, and Claus Weihs. 2012. “Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation.” Evolutionary Computation 20 (2): 249–75.
Bommert, Andrea, Xudong Sun, Bernd Bischl, Jörg Rahnenführer, and Michel Lang. 2020. “Benchmark for Filter Methods for Feature Selection in High-Dimensional Classification Data.” Computational Statistics & Data Analysis 143: 106839. https://doi.org/https://doi.org/10.1016/j.csda.2019.106839.
Breiman, Leo. 1996. “Bagging Predictors.” Machine Learning 24 (2): 123–40.
Brenning, Alexander. 2012. “Spatial Cross-Validation and Bootstrap for the Assessment of Prediction Rules in Remote Sensing: The R Package Sperrorest.” In 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE. https://doi.org/10.1109/igarss.2012.6352393.
Chandrashekar, Girish, and Ferat Sahin. 2014. “A Survey on Feature Selection Methods.” Computers and Electrical Engineering 40 (1): 16–28. https://doi.org/https://doi.org/10.1016/j.compeleceng.2013.11.024.
Collett, David. 2014. Modelling Survival Data in Medical Research. 3rd ed. CRC.
Demšar, Janez. 2006. “Statistical Comparisons of Classifiers over Multiple Data Sets.” Journal of Machine Learning Research 7 (1): 1–30. https://jmlr.org/papers/v7/demsar06a.html.
Guyon, Isabelle, and André Elisseeff. 2003. “An Introduction to Variable and Feature Selection.” Journal of Machine Learning Research 3 (Mar): 1157–82.
Hastie, Trevor, Jerome Friedman, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Springer New York. https://doi.org/10.1007/978-0-387-21606-5.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2014. An Introduction to Statistical Learning: With Applications in r. Springer Publishing Company, Incorporated.
Karl, Florian, Tobias Pielok, Julia Moosbauer, Florian Pfisterer, Stefan Coors, Martin Binder, Lennart Schneider, et al. 2022. “Multi-Objective Hyperparameter Optimization - an Overview.” https://doi.org/10.48550/ARXIV.2206.07438.
Lang, Michel. 2017. checkmate: Fast Argument Checks for Defensive R Programming.” The R Journal 9 (1): 437–45. https://doi.org/10.32614/RJ-2017-028.
Lang, Michel, Martin Binder, Jakob Richter, Patrick Schratz, Florian Pfisterer, Stefan Coors, Quay Au, Giuseppe Casalicchio, Lars Kotthoff, and Bernd Bischl. 2019. mlr3: A Modern Object-Oriented Machine Learning Framework in R.” Journal of Open Source Software, December. https://doi.org/10.21105/joss.01903.
Legendre, Pierre. 1993. “Spatial Autocorrelation: Trouble or New Paradigm?” Ecology 74 (6): 1659–73. https://doi.org/10.2307/1939924.
Lovelace, Robin, Jakub Nowosad, and Jannes Muenchow. 2019. Geocomputation with R. CRC Press.
Meyer, Hanna, Christoph Reudenbach, Tomislav Hengl, Marwan Katurji, and Thomas Nauss. 2018. “Improving Performance of Spatio-Temporal Machine Learning Models Using Forward Feature Selection and Target-Oriented Validation.” Environmental Modelling & Software 101 (March): 1–9. https://doi.org/10.1016/j.envsoft.2017.12.001.
Muenchow, J., A. Brenning, and M. Richter. 2012. “Geomorphic Process Rates of Landslides Along a Humidity Gradient in the Tropical Andes.” Geomorphology 139-140: 271–84. https://doi.org/https://doi.org/10.1016/j.geomorph.2011.10.029.
R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Schratz, Patrick, Jannes Muenchow, Eugenia Iturritxa, Jakob Richter, and Alexander Brenning. 2019. “Hyperparameter Tuning and Performance Assessment of Statistical and Machine-Learning Algorithms Using Spatial Data.” Ecological Modelling 406 (August): 109–20. https://doi.org/10.1016/j.ecolmodel.2019.06.002.
Silverman, Bernard W. 1986. Density Estimation for Statistics and Data Analysis. Vol. 26. CRC press.
Simon, Richard. 2007. “Resampling Strategies for Model Assessment and Selection.” In Fundamentals of Data Mining in Genomics and Proteomics, edited by Werner Dubitzky, Martin Granzow, and Daniel Berrar, 173–86. Boston, MA: Springer US. https://doi.org/10.1007/978-0-387-47509-7_8.
Sonabend, Raphael, Franz J Király, Andreas Bender, Bernd Bischl, and Michel Lang. 2021. mlr3proba: An R Package for Machine Learning in Survival Analysis.” Bioinformatics, February. https://doi.org/10.1093/bioinformatics/btab039.
Vanschoren, Joaquin, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2013. “OpenML: Networked Science in Machine Learning.” SIGKDD Explorations 15 (2): 49–60. https://doi.org/10.1145/2641190.2641198.
Wolpert, David H. 1992. “Stacked Generalization.” Neural Networks 5 (2): 241–59. https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1.