References
Bergstra, James, and Yoshua Bengio. 2012. “Random
Search for Hyper-Parameter
Optimization.” J. Mach. Learn. Res. 13:
281–305.
Binder, Martin, Florian Pfisterer, Michel Lang, Lennart Schneider, Lars
Kotthoff, and Bernd Bischl. 2021. “mlr3pipelines - Flexible Machine Learning
Pipelines in R.” Journal of Machine Learning
Research 22 (184): 1–7. http://jmlr.org/papers/v22/21-0281.html.
Bischl, Bernd, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob
Richter, Erich Studerus, Giuseppe Casalicchio, and Zachary M. Jones.
2016. “mlr: Machine
Learning in R.” Journal of Machine
Learning Research 17 (170): 1–5. http://jmlr.org/papers/v17/15-066.html.
Breiman, Leo. 1996. “Bagging Predictors.” Machine
Learning 24 (2): 123–40.
Brenning, Alexander. 2012. “Spatial Cross-Validation and Bootstrap
for the Assessment of Prediction Rules in Remote Sensing: The
R Package Sperrorest.” In 2012 IEEE
International Geoscience and Remote Sensing Symposium.
IEEE. https://doi.org/10.1109/igarss.2012.6352393.
Chandrashekar, Girish, and Ferat Sahin. 2014. “A Survey on Feature
Selection Methods.” Computers and Electrical Engineering
40 (1): 16–28. https://doi.org/https://doi.org/10.1016/j.compeleceng.2013.11.024.
Collett, David. 2014. Modelling Survival Data
in Medical Research. 3rd ed. CRC.
Guyon, Isabelle, and André Elisseeff. 2003. “An Introduction to
Variable and Feature Selection.” Journal of Machine Learning
Research 3 (Mar): 1157–82.
Hastie, Trevor, Jerome Friedman, and Robert Tibshirani. 2001. The
Elements of Statistical Learning. Springer New York. https://doi.org/10.1007/978-0-387-21606-5.
Lang, Michel. 2017. “checkmate: Fast Argument
Checks for Defensive R Programming.” The R
Journal 9 (1): 437–45. https://doi.org/10.32614/RJ-2017-028.
Lang, Michel, Martin Binder, Jakob Richter, Patrick Schratz, Florian
Pfisterer, Stefan Coors, Quay Au, Giuseppe Casalicchio, Lars Kotthoff,
and Bernd Bischl. 2019. “mlr3: A
Modern Object-Oriented Machine Learning Framework in
R.” Journal of Open Source Software,
December. https://doi.org/10.21105/joss.01903.
Legendre, Pierre. 1993. “Spatial Autocorrelation: Trouble or New
Paradigm?” Ecology 74 (6): 1659–73. https://doi.org/10.2307/1939924.
Li, Lisha, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. 2016. “Efficient Hyperparameter Optimization and
Infinitely Many Armed Bandits.” CoRR abs/1603.06560. http://arxiv.org/abs/1603.06560.
Lovelace, Robin, Jakub Nowosad, and Jannes Muenchow. 2019.
Geocomputation with R. CRC Press.
Muenchow, J., A. Brenning, and M. Richter. 2012. “Geomorphic
Process Rates of Landslides Along a Humidity Gradient in the Tropical
Andes.” Geomorphology 139-140: 271–84.
https://doi.org/https://doi.org/10.1016/j.geomorph.2011.10.029.
R Core Team. 2019. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R-project.org/.
Schratz, Patrick, Jannes Muenchow, Eugenia Iturritxa, Jakob Richter, and
Alexander Brenning. 2019. “Hyperparameter Tuning and Performance
Assessment of Statistical and Machine-Learning Algorithms Using Spatial
Data.” Ecological Modelling 406 (August): 109–20. https://doi.org/10.1016/j.ecolmodel.2019.06.002.
Silverman, Bernard W. 1986. Density Estimation for Statistics and
Data Analysis. Vol. 26. CRC press.
Simon, Richard. 2007. “Resampling Strategies for Model Assessment
and Selection.” In Fundamentals of Data Mining in Genomics
and Proteomics, edited by Werner Dubitzky, Martin Granzow, and
Daniel Berrar, 173–86. Boston, MA: Springer
US. https://doi.org/10.1007/978-0-387-47509-7_8.
Sonabend, Raphael, Franz J Király, Andreas Bender, Bernd Bischl, and
Michel Lang. 2021. “mlr3proba: An
R Package for Machine Learning in Survival
Analysis.” Bioinformatics, February. https://doi.org/10.1093/bioinformatics/btab039.
Wolpert, David H. 1992. “Stacked Generalization.”
Neural Networks 5 (2): 241–59. https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1.